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ABSTRACT
We are witnessing increasing calls for reproducibility and replicabil-
ity in HRI studies to improve reliability and confidence in empirical
findings. One solution to facilitate this is using a robot platform
that researchers frequently use, making it easier to replicate studies
to verify results. In this work, we focus on a popular, affordable,
and rich-in-functionality robot platform, NAO/Pepper, and con-
tribute a generalized experiment project specifically for conducting
language-based HRI experiments where a robot instructs a human
for a task, including objective data collection.

Specifically, we first describe a concrete workflow from an ex-
isting experiment and how it is generalized. We then evaluate the
generalized project with a case study to show how adopters can
quickly adapt to their specific experiment needs. This work pro-
vides inspiration for HRI researchers to not only provide their
experiment code as supplementary material but also generalize
them to benefit other researchers to advance empirical research
in HRI. The generalized Choregraphe project with documentation,
demo, and usage notes is available under MIT license on GitHub at
https://github.com/TheRARELab/langex. We welcome questions by
posting GitHub issues and pull requests to share adapted packages.

CCS CONCEPTS
• Human-centered computing → Systems and tools for inter-
action design; • Computer systems organization → Robotics.
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Code generalized to fit an 
arbitrary number of factors

● Generalized previously 
hard-coded conditions & data 
collection code

● Improved documentation for 
each library behavior

Figure 1: The generalized Choregraphe experiment project,
with major non-code modifications circled in blue. It is com-
mon for experimenters to implement their own software for
experiments. This work focuses on the most popular robot
platforms, NAO/Pepper, contributing a generalized project
for experimenters to reuse to improve reproducibility.

1 INTRODUCTION
To advance empirical research in fields like human-robot interac-
tion (HRI), tightly controlled [18] or in-the-wild experiments [19]
have been the cornerstone for contributing to human’s knowledge
of the perception and interaction of robots. To evaluate robot design,
interactions, or algorithms, experimenters must develop not only
them, the base condition, and a state-of-the-art method to compare,
but also data collection for data analysis. To carry out evaluations,
researchers often need to develop their own data collection meth-
ods. While there are well-validated subjective metrics [48] with
reusable survey questions, oftentimes objective data, such as task
completion time, is collected in their own code that roboticists must
implement on their own. This distracts researchers from their focus
on answering the research questions at hand and increases time
spent on the procedure rather than the research itself.

Moreover, similar to the Psychology field that is currently experi-
encing a replication crisis [43, 47], the HRI field starts seeing increas-
ing calls for reproducible and replicable studies [3, 7, 12, 15, 25, 45]
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to increase the confidence and trust in the findings of the user stud-
ies as well as allow researchers to easily build upon each other’s
work to facilitate faster advancement of the field.

One of the barriers to replicability is caused by the use of different
robot platforms [3] that have different appearances and physical
limitations, leading to the generalizability issue where researchers
are not able to replicate on their own robot [12].While this issue can
be solved by conducting experiments on different robot platforms,
the cost factor of current robot platforms severely limits the number
of robot platforms researchers could afford to evaluate their work.

One solution to the robot platform difference issue is to use
one particular robot, e.g., the widely-used small NAO robot [39],
manufactured by Aldebaran [38]. In a review article, Amirova et al.
[1] found over 300 works in the literature from 2010 to 2020 that
used NAO as their research platform of choice in a wide variety
of domains like education (e.g., [9, 23]), healthcare (e.g., [24]), and
industry [1, 31]. Indeed, thanks to NAO’s affordability and broad
functionality, it has become the de facto standard platform for
conducting social robotics research [1], in addition to being the
standard robot for the Standard Platform League of RoboCup [21].

Yet, despite NAO’s popularity, there have been no software pack-
ages readily available for experimenters to modify and reuse to
conduct experiments, including collecting common objective met-
rics [48] such as task completion time. Providing such an experi-
ment package will not only help individual experimenters but also
facilitate reproducibility and replicability through a standardized
effort on a de facto standard robot platform, benefiting the whole
HRI community at large.

In this work, we contribute a Choregraphe1 package (Figure 1)
generalized from two language-based HRI experiments where a
robot instructed a human to finish a multi-step task. The scope
and applicability lie in robot instruction tasks, which are a com-
mon type of task in HRI within the domains where robots use
language [44]. Tellex et al. [44] have identified several important
domains. In educational settings [4], a robot can be a storyteller to
children [26], assist with language development [5, 46], or be an
intelligent tutor, e.g., solving puzzles for problem-solving skills [29].
In socially assistive robotics, robots can also instruct older adults
to engage in physical exercises [10, 13]. In collaborative robotics,
robots need to generate ordered instructions for correct and effi-
cient assembly [22, 41]. Robots in those domains work with people,
and human-subjects evaluations are needed. For a full review of
robots that use language, we refer readers to Tellex et al. [44].

With this work, in addition to facilitating conducting experi-
ments and reproducibility, we hope to promote the reuse of one-off
experiment code by inspiring other HRI researchers on how to
generalize their experiment code for reuse, in addition to providing
them as is in supplementary experiment material.

2 CONCRETE LANGUAGE-BASED HRI STUDY
We first discuss a specific workflow from our published language-
based study [16] that retains the core elements necessary for con-
ducting language-based HRI experiments. In the user study, the
authors evaluated a computational referring form selectionmodel in

1Choregraphe is a software to design robot behavior for NAO/Pepper [14], with
modular boxes for pre-defined and custom behaviors programmable by Python.

Figure 2: The as-is Choregraphe flow diagram [34] for the
referring form experiment project [17], simplified in Figure 3.
The enlarged, original version is available at https://osf.io/
7akvz. As readers go over Section 2, it would be beneficial
and convenient to reference the enlarged version.
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Figure 3: The specific workflow of a user study by Han and
Williams [16]. Nodes in blue are for data collection (See Sec-
tion 3). The first row with nodes’ names prefixed P (for Pre-
pare) contains preparation nodes. The second rowwith nodes’
names prefixed R (for Ready) contains getting-ready nodes.
The third circular row contains nodes where an interactive
dialog was given utterance by utterance, with D for Dialog.
The last E2 node indicates the completion of a dialog.

a live HRI scenario by replacing existing referring forms in a dialog
with predicted references. For the task, a Pepper robot instructed a
human to construct buildings using repeated wood blocks in nine
shapes (cf. [27]). The model was compared with a random baseline
and a full description condition. As part of their supplementary
material [17] to the paper itself, a Choregraphe project was open
sourced and its Choregraphe flow diagram is shown in Figure 2.

To help understand how the experiment works, we extracted
a flow chart (Figure 3) from the Choregraphe project on how the
experiment was prepared (top row) and how instructions were con-
firmed and delivered (middle row and bottom left group), including
data collection nodes with a blue background. This flow chart also
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serves for comparison purposes to compare with the generalized
workflow that will be discussed in Section 4. Below we examine the
workflow in detail. To keep us focused on the general workflow,
the data collection nodes will be discussed in Section 3.

(1) Data collection setup (P1): First (P1 and the top left nodes in
Figure 3), a few metadata needs to be set for the current participant
so relevant data like instruction completion time can be associated
with the participant. The metadata includes anonymized participant
ID and the date/time when the instruction ends and the utterance
starts to calculate the utterance completion time.

(2) Select Condition & Read Instructions (P2-P4): After the
participant meta information is stored, two factors in the experi-
ment conditions are set, i.e., quadrant and referring form selection
strategy. As seen from Figure 2, each factor has three levels, making
a total of nine combinations, although in the experiment, Latin
square was used to use fewer combinations to counterbalance or-
dering and learning effects. Under the hood, a different dialog was
chosen for the robot to utter based on the resulting condition.

(3) Set Desired SpeakerVolume (P4): Effective communication
in an HRI scenario partially relies on audio clarity, and setting
the desired speaker volume makes sure that bad clarity does not
confound the findings. In the experiment, the authors adjusted the
robot’s volume level based on the distance between the robot and
the participant sitting in a particular quadrant, ensuring that the
spoken instructions were audible while not being too loud. This
setting was used throughout the experiment.

(4) Participant and Robot Get Ready (R2–R4): Before the
robot delivers the first utterance, these steps ensure the participant
confirms their readiness by speaking “Ok” (R2), the robot responds
with a start phase (i.e., “Let’s get started”), and finally the robot
moves to an initial pose like looking at the objects on the table (R4).
R4 accepts a pose relative to, e.g., the robot’s torso.

(5) Robot Listens for “next” (D1): Then the robot transitions
into a listening mode, attentively awaiting a predefined “wake-up
word” or trigger from the participant, such as “next”. However,
it is important to note that, rather than relying on the robot’s
autonomous speech recognition, a Wizard of Oz technique [30] (ex-
perimenters manually control but with participants believing the
agent’s autonomy) was used for the next instruction. This choice
was made due to the complexities and challenges associated with
implementing reliable speech recognition, which may lead to con-
founding results caused by imperfect speech recognition, i.e., adding
extra time for instruction completion. In Han and Williams [16]’s
work, experimenters used a text input to control the robot to move
to the next utterance after hearing “ok”.

(6) Robot Instructs (D3 and D5): This step involves the itera-
tive process of the robot’s instruction delivery and the participant’s
confirmation before the robot speaks the next utterance. The robot
initiates the interactive dialog by providing instructions to the par-
ticipant. These instructions are generated based on the condition
selected at P3 and P4 in Figure 3. The iterative nature of this pro-
cess allows for the sequential progression of the dialog, with each
instruction followed by participant confirmation to the next one.

(7) Completion of Dialog (E2): The experiment ends with the
last instruction for the task. Once all instructions have been com-
pleted, the robot announces, “Done.” In Han and Williams [16]’s
experiment, the robot says, “I have finished all instructions for this

Table 1: Sample Raw CSV Data With Headers

PID Condition Utterance Event Timestamp

P1 Random “Bring in a red arch.” UtterStart (omitted)
P1 Random “Bring in a red arch.” UtterEnd (omitted)
P1 Random “Bring in a red arch.” InstructEnd (omitted)
... ... ... ... ...

building.” This clear indication signals the conclusion of the interac-
tion, providing experimenters the opportunity to ask participants
to conduct post-condition surveys.

3 BUILT-IN OBJECTIVE DATA COLLECTION
The data collection approach in our generalized project mainly
focuses on objective metrics such as task performance, including
task completion time. That is, how long the participants were able
to complete the task, implicitly answering the extent of the instruc-
tions given by the robot was understandable for them to carry out.
The time taken by each participant for each utterance completion
is recorded and stored in CSV format on the robot.

As seen in Figure 4, the “stopwatch” starts right before the in-
struction has been delivered (D4 in Figure 4) and ends after the
utterance was delivered (D6 in Figure 4). There is another node (D2)
that logs instruction end time. Each time log line (See Table 1) is
appended to a separate file, right after a node was executed, for each
participant with their corresponding utterances. The log is then
used to analyze the time differences (i.e., 𝑡 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝐸𝑛𝑑−𝑡𝑈𝑡𝑡𝑒𝑟𝐸𝑛𝑑 ) in
instruction completion for each condition, excluding the time spent
on speaking the utterance (i.e., 𝑡𝑈𝑡𝑡𝑒𝑟𝐸𝑛𝑑 −𝑡𝑈𝑡𝑡𝑒𝑟𝑆𝑡𝑎𝑟𝑡 ). An R script
that combines all log files and calculates the instruction completion
time is in the “proprocess-log” folder within the repository.

Subjective Data Collection: While the data collection effort
was mostly focused on collecting objective data in the software im-
plementation, subjective metrics like understandability can also be
collected through questionnaires as usual after participants experi-
ence a condition, i.e., summative assessments. For formative assess-
ments seen in mixed-method design, e.g., participants’ emotions,
video and audio data collection is recommended for qualitative
coding [2] by setting up an external camcorder because NAO [37]
and Pepper [32] have a limited horizontal field of view (< 70◦).

4 GENERALIZATION
Theworkflow in Figure 3 shows the robot’s behavior and interaction
with participants during Han and Williams [16]’s experiment. In
one of our current works under the experimentation phase, we
were able to generalize the project to fit our language-based HRI
experiment, ending up with another specific Choregraphe project.
This inspired us to contribute a generalized Choregraphe package
that is not tied to specific experiments like those two.

In this section, we describe how we generalized from the original
Choregraphe project and visit a case study embedded in this general
project on how experimenters can adapt the generalized project to
another language-based experiment.

Figure 4 shows the generalized version of the workflow in Fig-
ure 3, and Figure 1 shows the corresponding Choregraphe flow
diagram. The difference at the surface level is the replacement of
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Figure 4: Generalized workflow for conducting language-
based HRI user studies. At a high level, the condition selec-
tion is generalized to add an arbitrary number of factors.
Other hard-coded values can be customized (See Section 4).

the quadrant and referring form strategy selection nodes (P2 and
P3 in Figure 3), as well as removals of hard-coded values.

The quadrant selection node is particular to the experimental
setup used in [16]. In that user study, participants sat in three
of four quadrants and were instructed by the robot to complete
three building construction tasks in each quadrant. The constituting
blocks for each building were distributed to all three quadrants to
test references to blocks not present in the scene.

In the generalized package, we now have two factor nodes, as
seen in Figure 1 top right. When the “Factor 2” node is duplicated,
the package allows for an arbitrary number of factors. Under the
hood, we removed the hard-coded quadrant and referring form
selection variable throughout the Python code in each workflow
node and added code to concatenate and memorize different factors
for use in later nodes in the workflow. For example, The “Log is
ready” node (R1 in Figure 4) retrieves the condition string to create
individual log files.

Additionally, we have added the start phrase (R3), end phrase
(E2), and “log directory” nodes for easy customization, as seen in
the bottom row of the Choregraphe flow diagram in Figure 1.

Along the generalization process, we also added documentation
for each node, whereas the previous documentation only had place-
holder text. For example, the “Insert P#” node has this description:
“Stores participant ID to Exp/Participant in NAOqi’s shared mem-
ory.” On a related note, all data was prefixed with “Exp” and can be
monitored in the memory watcher panel [36].

4.1 Case Study: How to Use and Adapt
To use this general package, one first follows the system require-
ment and installation guide in the GitHub repository. Then the
project can be opened in Choregraphe to start the customization
process. The current project is named “general-experiment” and it
should be changed in the property of the project and by editing the
“manifest.xml” file. Then, experimenters should have a list of factors
in hand and the levels of each factor. With them, the “Factor 1” and
“Factor 2” nodes should be changed both in their name and the list
content. If there are more than three factors, the “Factor 2” and

“Append Factor 2” should be duplicated to ensure the extra factors
appear in the log filename, log header, and log rows.

Once these factors are specified in the Choregraphe flow dia-
gram, the dialog content needs to be placed in the “utterances”
directory at the project root. Each condition should have a dialog
file named “factor1-factor2-factor3.txt”. Then, to specify where the
log directory is, simply change the content of the “Log directory”
node. For start and end phrases, they can also be changed in the
two text box nodes (See the bottom row in Figure 1).

One last change is the robot’s initial behavior, which can be
found in the “initialize_pose” folder. To change the robot’s pose,
e.g., to look at the table in front of it, after it speaks the start phase,
the node “See Table” (See mid-left of Figure 1) can be used for this
purpose by changing its parameters, the offset values (𝑥,𝑦, 𝑧) and
the reference frame, e.g., torso.

To test the program, it follows the same procedure as running a
hello-world Choregraphe application [35]. As the program starts
running, log files will be created in “/home/nao/[log directory]/”
on the robot and the R script can be used to analyze them. A video2
is available to show the expected output.

5 LIMITATIONS
Human evaluation takes a variety of forms, and this work has fo-
cused on the specific experimental research [18] with an objective
data collection component and a brief discussion on mixed-method
design in Section 3. While experiments are good at isolating fac-
tors of interest and controlling confounding factors, we advocate,
as Fischer [11], methodological pluralism and acknowledge other
approaches that provide better ecological validity (representing
the wider world or highly dynamic, contextualized real-world hu-
man interactions), e.g., participatory design [42] and contextual
analysis [8]. In these non-experimental approaches, our evaluation-
related code and data collection may need to be further customized.
Yet, it is hard to find one solution that fits all, or fully confirm the
superiority of one particular method, and the experimental method
is part of methodological pluralism. Future work should investigate
how to provide a generalized package for these kinds of evaluations.
Additionally, we hope to see more generalized experiment work for
other robot platforms, using the popular ROS framework [28], or
in non-language and multimodal domains, including emotion [20],
non-verbal cues [6], and non-dyadic group environments [40].

6 CONCLUSION
We contribute a generalized experiment package along with the
generalization process of a language-based experiment. It can be
used on the most popular NAO/Pepper platform (cf. [1]) to facilitate
replication and comparison of findings, which is important before
robots’ cost factor decreases. A case study showed the adaption of
experiment conditions, utterances, and initial behavior. Additional
behaviors can be supported by Choregraphe through its behavior
design functionalities [33]. With this work, we provide inspira-
tion for and raise awareness of the practice of generalizing HRI
researchers’ one-off experiment code. So researchers, especially
those in need of evaluating robots that use language, can easily
build upon each other’s work to better advance the HRI field.
2https://www.youtube.com/shorts/5plLXZN3D0E
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