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Abstract
Projector-based augmented reality (AR) enables robots to commu-
nicate spatially-situated information to multiple observers without
requiring head-mounted displays, e.g., projecting navigation path.
However, they require flat and weakly textured projection surfaces;
otherwise, the surface needs to be compensated to retain the origi-
nal projected image. Yet, existing compensation methods assume
static projector-camera-surface configurations and may not work
in complex, textured environments where robots must navigate.

In this work, we evaluate state-of-the-art deep learning-based
projection compensation on a Go2 robot dog in a search-and-rescue
scene with discontinuous, non-planar, strongly textured surfaces.
We contribute empirical evidence on critical performance limita-
tions of state-of-the-art compensation methods: the requirement
of pre-calibration and inability to adapt in real-time as the robot
moves, revealing a fundamental gap between static compensation
capabilities and dynamic robot communication needs. We propose
future directions for enabling real-time, motion-adaptive projection
compensation for robot communication in dynamic environments.

CCS Concepts
• Human-centered computing → Systems and tools for inter-
action design; • Computer systems organization → Robotics.
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1 Introduction
For robots to work effectively with people, they must be able
to communicate task-related information and their intent clearly
to gain trust and acceptance. Human-robot interaction (HRI) re-
searchers have traditionally investigated non-verbal means, e.g.,
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Figure 1: A robot dog in a search-and-rescue scene with textured
and non-flat surfaces, on which projecting requires compensation
to correct geometric and photometric distortions. We contribute
empirical evidence for state-of-the-art compensation performance.

gesture [13, 43], eye gaze [1, 36], sound [61], visual display [49], light
[3], and verbal speech [50]. However, real-world interactions are
highly contextual and often involve specific objects and locations in
the physical world. When communicating about spatially situated
targets in cluttered scenes, traditional modalities such as gesture,
gaze, and speech can lack precision and clarity, while low-fidelity
sound and light signals are less expressive, and on-robot displays
suffer from limited viewing angles and legibility at a distance.

To enable robots to communicate spatially situated objects, re-
searchers are increasingly leveraging augmented reality (AR) [16,
42, 51, 54, 55]. AR spatially registers 3D virtual content onto the
physical world, allowing visualizations to be situated where they
are relevant, also known as situated visualization [44]. Applied to
robotics, for example, AR allows robots to precisely externalize mo-
tion intent, e.g., manipulation and navigation trajectories directly in
the task space, e.g., which object it refers to [8, 19], perceived or to
be manipulated [42], or which path it will navigate for both ground
robots [20] and drones [56]. Results have shown improved safety
during navigation, with participants choosing alternative paths
[11], increased comfort, and motion intelligence [59]. Recently, AR
virtual appendage was even perceived more anthropomorphic [21],
activating familiar human-human interaction patterns.

Yet, we risk losing these benefits that AR offers to robotics due to
a major scalability issue associated with the popular headset-based
AR displays. They require each viewer to wear a headset, which is
often impractical for a crowd of people in a group and team context
[45]. In contrast, projector-based AR projects augmentation directly
onto the scene, viewable to many observers at once. To retain the
benefits of AR situated visualization in dynamic environments
where robot operates and interacts with humans, there is a critical
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research gap on how to enable robots to project onto varied surfaces
while moving, requiring real-time compensation that adapts to
changing viewpoints, surface geometries, and lighting conditions.

In this work, we evaluate state-of-the-art deep learning-based
projection compensation method, CompenHR, on a Unitree Go2
robot dog in a complex, search-and-rescue scene (Fig. 1). We con-
tribute both quantitative and qualitative empirical evidence that
identify a critical limitation: existing compensation methods are
inherently static and cannot support the real-time, motion-adaptive
requirements of mobile robot communication.

Specifically, our contributions are: (1) We recreate a real-world,
representative search-and-rescue debris scene as an evaluation
testbed with discontinuous, non-planar, strongly textured surfaces.
(2) We empirically evaluate CompenHR on a mobile robot plat-
form, combining quantitative image metrics with qualitative visual
inspection across multiple viewpoints. (3) We identify a key limi-
tation: viewpoint-specific compensation that fails to generalize as
the robot moves, and we outline future research directions toward
motion-adaptive and responsive projection compensation.

2 Related Work
Projectors are widely used in many applications, such as interac-
tive entertainment [4, 5, 30, 39], immersive displays [28, 33, 41],
and projector-based spatial AR [18, 34, 35, 52]. Compared to head-
mounted see-through displays, projector-based spatial AR directly
projects onto the environment, making situated visualizations view-
able to multiple interactants or bystanders without requiring them
to wear headsets or glasses. In HRI, researchers have used projectors
to communicate navigation intent by overlaying a mobile robot’s
path with lines [10], arrows [10, 12], gradient bands [59], or simple
maps [11]. Human-subjects studies show that such projections can
improve comfort and perceived motion intelligence [59], lead to
safer path choices [11], and increase efficiency and confidence in
understanding robot navigation intent [12].

However, these systems typically assume continuously flat, weakly
textured surfaces such as floors or walls. In contrast, the present
work considers non-continuous, non-planar, textured construction
debris as projection surfaces, where compensation becomes crucial
for robust communication in realistic environments.

For immersive and accurate visual experiences on such com-
plex surfaces, projector compensation is needed to correct geo-
metric and photometric distortions introduced by surface shape,
texture, and illumination, as reviewed in [6, 17]. For geometric cor-
rection, many methods project well-defined patterns or markers,
such as structured light [15, 48], to estimate surface geometry. Oth-
ers simplify this process for efficiency by designing specific patterns
[29, 32, 37, 60]. Additional approaches incorporate extra sensors,
such as infrared (IR) cameras [22] or depth cameras [27, 47], to
track surfaces without visible patterns.

For photometric compensation, algorithms typically generate a
projector input that compensates for the color and texture of the sur-
face and the photometric environment. They often estimate a color
transfer function by projecting additional patterns [2, 7, 14]. Some
recent methods jointly address both geometry and photometry, i.e.,
full compensation, using carefully designed patterns [40, 46]. Build-
ing on these ideas, deep learning approaches have been introduced

for projector compensation. Early work focused on photometric
compensation [24] and was subsequently extended to full com-
pensation [23, 25, 26]. More recently, these methods have been
further extended to high-resolution compensation, exemplified by
the state-of-the-art CompenHR [57] that this work uses.

For all these methods, however, it is unknown how they perform
when deployed on a mobile robot in a realistic debris environment.

3 Method
3.1 State-of-Art Compensation: CompenHR
CompenHR [57] is a state-of-the-art deep learning method for full
projector compensation that addresses both geometric and photo-
metric distortions in an end-to-end trainable framework.

The goal of projector compensation is to find a compensated
projector input image 𝑥∗ such that when projected onto a tex-
tured, non-planar surface and captured by a camera, the result
𝑥∗ matches the desired appearance 𝑥 ′: 𝑥∗ = T (F (𝑥∗; 𝑙, 𝑠)) ≈ 𝑥 ′

where T denotes geometric warping due to surface shape, F de-
notes photometric transformation due to surface reflectance prop-
erties 𝑠 and lighting 𝑙 . CompenHR learns the inverse mapping:
𝑥∗ = F † (T −1 (𝑥 ′);T −1 (𝑠)) where 𝑠 is the captured surface image
under ambient lighting.

CompenHR consists of two main components: (1) GANet (short
for Attention-basedGeometry CorrectionNetwork) uses an attention-
based grid refinement network to estimate a warping field that
corrects geometric distortions caused by non-planar surfaces, and
(2) PANet (short for Attention-based Photometric Compensation
Network) is used to recover the high-resolution images, employing
shuffle operations to correct color and brightness distortions caused
by surface texture and material properties.

Potential Problem: Specifically, CompenHR learns compen-
sation parameters for a fixed geometric relationship between the
projector, camera, and projection surface. The geometric correc-
tion network (GANet) learns a displacement field that transforms
the camera view to the projector’s canonical frontal view. This
transformation is only valid for the specific viewpoint where the
training data was collected. Similarly, the photometric network
(PANet) learns surface reflectance and color properties from that
viewpoint. When the projector moves to a new position, both the
geometric transformation and photometric properties change, but
the network has no mechanism to adapt these learned parameters.

This viewpoint-specific design makes CompenHR representative
of current state-of-the-art compensation methods: they achieve
high quality through learning viewpoint-specific mappings, but
this specialization prevents generalization to new viewpoints.

3.2 Recreating Search and Rescue Scene
Inspired by search-and-rescue missions in Japan, Italy, and the USA
at collapsed buildings after earthquakes [9, 31, 38], we constructed
a representative disaster scene (Figure 1) for the evaluation. We se-
lected common construction materials: concrete blocks and pavers,
asphalt shingles, ceramic tiles, and wooden boards. These materials
exhibit diverse reflectance properties, creating realistic photometric
conditions with strong textures. We broke the materials to recreate
the chaotic geometry of collapse sites while maintaining real-world
depth variation (Figure 2 bottom). The resulting surface presents
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(b) View from diagonal side.(a) View from left side. (c) View from front side.

Figure 2: Construction debris projection surface in three views. Top:
images showing complex textured surface. Bottom: depth maps
(blue: near, red: far) revealing irregular 3D geometry, which chal-
lenges compensation robustness when camera position changes.

multiple real-world challenges: (1) geometric discontinuities where
materials abruptly change depth, (2) strong texture interference
from wood grain and shingle patterns, (3) mixed material reflectance
requiring different photometric compensation, and (4) occlusions
that change depending on viewpoint.

In this real-world scene, we evaluated CompenHR to determine
if existing compensation methods can support projection-based
communication on a mobile robot in dynamic environments.

3.3 Evaluation Procedure
We tested four typical robot-to-human communication patterns
commonly needed in search-and-rescue scenarios with human-
robot teaming: a person silhouette (to indicate human detection or
survivor presence), a navigation arrow (to show intended naviga-
tion path), a plug icon (to indicate low power of the robot), and a
cross symbol (to indicate blocked areas).

For each pattern, the Go2 robot projected the image onto the
debris field at three different viewpoints of the scene (Figure 2),
approximately 0.5 m from the surface at 30◦ elevation angle:View 1
(left): Position near the left side of the debris pile;View 2 (diago-
nal): Position along the diagonal left side;View 3 (front): Position
near the front of the debris pile.

For each viewpoint, we captured the surface image and the un-
compensated projection of the pattern, as seen in Figure 3. These
camera-captured images were used to generate compensated pro-
jections with CompenHR’s pretrained high-resolution model.

Then, for every viewpoint and pattern, we recorded: (1) an
uncompensated projection (raw pattern projected directly onto the
scene) and (2) a compensated projection (CompenHR output).

Our projector-robot system comprises a Go2 robot dog from
Unitree, Go2’s camera [53], and ViewSonic LS711HD, a 4,200-lumen
1080p short throw projector. This forms a similar projector–camera
pair to standard ProCams setups but on a moving platform.

4 Results
To characterize how strongly compensation changes the projected
image, we compute three standard image similarity metrics be-
tween the camera-captured compensated projection and the corre-
sponding uncompensated projection at each viewpoint: Peak Signal-
to-Noise Ratio (PSNR) [58], Structural Similarity Index Measure
(SSIM) [58], and Root Mean Square Error (RMSE). PSNR summarizes

Table 1: Average image similarity scores between compensated and
uncompensated projections across four patterns, quantifying how
strongly CompenHR modifies the raw projection at each viewpoint.

View PSNR (dB) ↑ SSIM ↑ RMSE ↓

View 1 (left) 13.79 0.5171 52.14
View 2 (diagonal) 14.02 0.5558 51.39
View 3 (front) 12.71 0.5013 60.12

the average pixel-wise intensity error; higher values indicate more
similar images. SSIM ranges from 0 to 1 and captures structural
similarity (1 denotes identical; values around 0.5 indicate moderate
structural agreement). RMSE measures the average per-pixel in-
tensity difference, with larger values indicating stronger deviation.
Table 1 shows the aggregated results.

View-dependent photometric change. CompenHR produces
substantial photometric changes across all views when comparing
compensated to uncompensated projections: PSNR values are in the
low 12.7–14.0 dB range and SSIM values are around 0.50–0.56, both
indicating notable differences between compensated and uncom-
pensated projections. Views 1 and 2 exhibit similar levels of modi-
fication, whereas View 3 shows more aggressive and structurally
different changes with the largest RMSE and lowest PSNR/SSIM.

Degradation in symbol structure at different views. These
metrics alone do not tell whether compensation improves recogniz-
ability with respect to the ideal symbols. Fig. 3 provides qualitative
insight. For several patterns, compensation improves symbol con-
trast or reduces background interference: For example, the arrow-
head becomes more distinct at View 2, and the person silhouette
becomes more uniformly colored at View 1. However, the same
compensation sometimes breaks or distorts key parts of the sym-
bols: arrow shafts become disconnected at View 3, plug prongs blur
into the background at View 2, and the cross symbol’s arms or legs
appear truncated or bent at both View 2 and 3.

Static compensation limitation. This discrepancy between
numerical similarity and visual quality demonstrates a key issue:
The learned transformations are optimized for a specific projector-
camera-surface configuration. As the robot moves to different views,
these fixed transformations cannot adapt to the changed geometric
relationships and photometric conditions.

5 Discussion and Future Work
Our evaluation highlights both the promises and the limitations of
projector compensation for projected-AR-based robot communica-
tion on complex, textured debris surfaces.

On the one hand, the quantitative and visual results suggest
that CompenHR can make projected symbols more legible than
raw, uncompensated projections, such as the person silhouette
and the plug icon at View 1. When the robot is able to pause and
project from a known, calibrated pose, static compensation may
be sufficient to support simple symbolic communication, such as
indicating directions or marking human detections.
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DesiredUncompensated Compensated Uncompensated Compensated Uncompensated Compensated
View 1 (left) View 2 (diagonal) View 3 (Front)

Faded into environment Distorted

Arrow partly erased

Prongs blurred into background

Lower arm of cross truncated Cross arm distorted

Arrow shaft broken Arrowhead faded into background

Figure 3: Projector compensation of four different patterns (person, arrow, plug, cross) on construction debris.

On the other hand, the degradation observed at certain view-
points (notably View 3), where RMSE increases and structural arti-
facts appear in Fig. 3, reveals a mismatch between current compen-
sation algorithms and the realities of mobile robots. Methods like
CompenHR are static: They assume a fixed geometric relationship
among projector, camera, and surface, and they learn viewpoint-
specific mappings. A mobile robot, however, must communicate
while navigating, turning, and repositioning with respect to both
humans and the environment. Under these conditions, a one-time
calibration and fixed compensation field are not enough. More-
over, image-based metrics such as PSNR, SSIM, and RMSE do not
fully capture human-centered outcomes that matter in HRI, such
as reliable interpretation of the symbol and recognition efficiency.

Inspired by those needs, we lay out several future directions:
1. Geometric Adaptation with Continuous Tracking. Rather than

learning fixed warping fields with a static-world assumption, future
methods could track surface geometry continuously using visual
markers or SLAM. As the robot moves, the compensation module
would retain most of its warping and update it partially based on the
new additions of the view, narrowing down the search space while
still allowing projections spatially aligned with the environment.

2. Low-latency Photometric Compensation. The CompenHR archi-
tecture is computationally heavy and not designed for real-time

inference. Future work can explore lightweight photometric mod-
els, probably trade some accuracy for significantly reduced latency,
targeting update rates compatible with a robot’s movement.

3. Human Evaluation. Finally, user studies are needed to measure
how compensation quality, including failures, and update rate affect
the interpretation of compensated projections, task performance,
and trust. Combining them with objective image metrics will help
evaluate different levels of compensation in different HRI scenarios
and guide algorithm design toward human-relevant performance.

6 Conclusion
On a mobile robot in a search-and-rescue debris environment, we
evaluated state-of-the-art projector-compensation method, Com-
penHR. Our results show that compensation can improve the rec-
ognizability of projected symbols on textured, non-planar surfaces
at a calibrated pose, but degrades as the robot moves to new view-
points. This gap between static compensation and dynamic, real-
time communication needs in mobile HRI motivates future work
on motion-adaptive, human-centered projection methods.
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