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Motivation & Problem

Human pauses: “What is
e Robots using learned policies the robot’s next subtask?”

(e.g., ACT) are opaque (lack
transparency)

e Humans may struggle to predict
robot actions to collaborate on
the fly

Robot’'s next move is
ambiguous — Pick red or
oreen?

| o e




Approaches to What methods exist for

generating robot intent

Explainability explanations?
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Inherently Interpretable Methods (BTs, Graphs)

Simplify BT: From actions to goals N V

place screw station

P - Sequence A look at table
detect screw
A detect screw

J
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‘ go pick screw Vjis]V|d {object pose}

A:convert to grasp pose

from {object pose}

Easy to justify behaviors

Easy to generate hierarchical, concise
explanations

Require hand-crafted logic e
%'Siquence
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Not applicable to learned ' |
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Post-Hoc XAl (e.g., Saliency, LIME, SHAP)

Post-hoc XAl (e.g., Saliency, LIME):

Static or offline explanations

Require model access

Not suitable for real-time
explanation
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Empirical Study
& CRIE:

Conceptual
Solution
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Would a high-performing
robot fail at teamwork?

How can we enable
real-time, model-agnostic
robot intent explanation
without altering the policy?



Empirical Analysis: ACT in Medication

Dispensing |
e Medication-dispensing task:
fulfill a shared order

Patient-Specific Box

e Conditions:
o Human-Human (baseline)

o Human-Agent (ACT-
controlled robot, no

explanation) ,
e Evaluate how well ACT = A, s
supports coordination without .. .. — .3 18 29

36,000 samples ACT

may
L/ x exhibit diverse
& 0.0
I coordination
X J egies

intent explanation &



Results — Human-Human vs. Human-Agent

Teamwork Performance Comparison (15 matched trials):
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Common Failure Modes

Redundant Retrievals Safety Conflicts Delays/Hesitation




Contextual Robot Intent Explanation (CRIE) System
Architecture

Encodes actions, context, goals & progression
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Contextual Robot Intent Explanation (CRIE) System
Archit

Uses Transformer and CVAE to process contextual
inputs into a latent representation of subtask intent

and decode it into a symbolic subtask labels
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Contextual Robot Intent Explanation (CRIE) System

Architecture

| context (Image)

Task

Robot Action

( Workspace ‘

“"Next, | will deliver the
labeled order to the packing
area.”

Image
\Encoder
3 | ' s T
|
[ AR
Text > Transformer Encoder | | r
Encoder | dequence’ |
> | of I | Intent
5 / I |Transformer| | Intent | ‘ | planation

I_ _____ [ —'4‘7 Text to Speech P—»
|

| | | ’
cvaE || ocwae . | !
Encoder | | TR I I R N T
L o |

Contextual

% . Communication
Information Processing

Intent prediction



Towards Embodied Agent
Intent Explanation in
Human-Robot Collaboration:
ACT Error Analysis and
Solution Conceptualization

I\ Y ~
Amanuel Zhao
Ergogo Han

27 soutiroros RARE LAB

therarelab.com

LCOAELCEVEVE

State-of-art robot policies
limit coordination and safety
during collaboration

Transparent robot intent is
essential for teamwork

CRIE will enable real-time &
policy-agnostic intent
explanations for fluent
collaborations






Built-in Structure (ACT)

e Chunking actions - supports short-horizon intent prediction

Action Chunking
o 1 2 3 4 5 6 7
=0 [}

t=4 L |

e Policy-specific

Action Chunking + Temporal Ensemble

e No symbolic subtask labels
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