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Abstract

Research indicates that humans can mistakenly assume that robots and humans have the same field
of view, possessing an inaccurate mental model of robots. This misperception may lead to failures
during human-robot collaboration tasks where robots might be asked to complete impossible tasks
about out-of-view objects. The issue is more severe when robots do not have a chance to scan the
scene to update their world model while focusing on assigned tasks.
To help align humans’ mental models of robots’ vision capabilities, we propose four field-of-view
indicators in augmented reality that reveal the robot’s actual horizontal vision limitations to human
collaborators and conducted a human-subjects experiment (N=41) to evaluate them in a collaborative
assembly task regarding accuracy, confidence, task efficiency, and workload. These indicators span a
spectrum of positions: two at robot’s eye and head space—deepening eye socket and adding blocks to
two sides of the eyes (i.e., egocentric), and two anchoring in the robot’s task space—adding extended
blocks from the sides of eyes to the table and placing blocks directly on the tables (i.e., allocentric).
Results showed that, when placed directly in the task space, the allocentric indicator yields the
highest accuracy, although with a delay in interpreting the robot’s field of view. When placed at
the robot’s eyes, the egocentric indicator of deeper eye sockets, possible for physical alteration, also
increased accuracy. In all indicators, participants’ confidence was high while cognitive load remained
low. Finally, we contribute six guidelines for practitioners to apply our augmented reality indicators
or physical alterations to align humans’ mental models with robots’ vision capabilities.

Keywords: augmented reality (AR), robot explainability, vision capability, field of view (FoV),
human-robot interaction (HRI)

1 Introduction

Mental models are structured knowledge systems
that enable people to engage with their surround-
ings [60]. They influence how people perceive
problems and decision-making [24], and show how
individuals interact within complex systems, such
as technological or natural environments [35].
In a team environment, a shared mental model
improves team performance when team members

have a mutual understanding of each other’s roles
and the collaborative task [25]. This is also true
in technological environments like human-agent
teams [52], applicable to physically embodied
agents like robots.

Indeed, Mathieu et al. [36] found that both
team- and task-based mental models were pos-
itively related to efficient team process and
performance. This highlights the importance of
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(a) Our design spectrum: from the robot (eyes to head) towards the task environment, and vice versa.
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(b) To indicate a robot’s vision capability, i.e., the field of view (FoV), we propose four egocentric and allocentric
indicators in augmented reality (AR) and evaluated them in a user study with Baseline (no indicators). The design
philosophy–from the eyes/head to task space–and descriptions of each design are detailed in Section 3 and 4.

Fig. 1: AR indicators for communicating a robot’s field of view (FoV) across our spatial spectrum.
The top panel illustrates the egocentric–allocentric spectrum and the four spatial regions; the bottom
panel shows the four AR overlays on Pepper and the workspace, together with the Baseline condition (0)
without an indicator.

shared mental models in shaping effective team-
work. To leverage the shared mental models,
Hadfield-Menell et al. [17] proposed a coopera-
tive inverse reinforcement learning formulation to
ensure that agents’ behaviors are aligned with
humans’ goals. Nikolaidis et al. [40] also devel-
oped a game-theoretic model of human adapta-
tion in human-robot collaboration. These studies
show that shared mental models are beneficial for
both human teams and human-robot teams: They
enhance coordination, improve performance, and
help understand collaborative tasks.

However, in human-robot teaming and col-
laboration scenarios, because robots more or less

resemble humans, humans can form an inaccu-
rate mental model of robots’ capabilities, leading
to mental model misalignment. Frijns et al. [14]
noticed this problem and proposed an asymmetric
interaction model: Unlike symmetric interaction
models where roles and capabilities are mirrored
between humans and robots, asymmetric interac-
tion models emphasize the distinct strengths and
limitations of humans and robots.

One mental model misalignment case related
to a robot’s vision limitation is the assumption
that robots possess the same field of view (FoV)
as humans. Although humans have over 180◦ FoV,
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a robot’s camera typically has less than 60◦ hor-
izontal FoV (e.g., Pepper’s 54.4◦ [4] and Fetch’s
54◦ [47, 61]). This discrepancy and assumption are
problematic. Particularly, our previous work [18]
studied how a robot can convey its incapability of
handing a cup, both out of reach and out of view,
and found that participants assumed human’s FoV
and demanded an explanation that was not needed
with a correct mental model.

Specifically, in the dynamic scenario [18], a
robot was completing an organization task in front
of a table while a person was busy watching a
video on a laptop on the right end of the table.
The person became thirsty and wanted the robot
to pass a cup that the person left on the left end
of the table, asking “Can you pass the cup?” How-
ever, the robot did not have a chance to move
its head to scan the scene to add the cup to its
world model while busy organizing the middle part
of the table. Despite the cup being out of the
robot’s less-than-60◦ FoV, participants assumed
the cup was within the robot’s FoV, and expected
the robot to successfully hand it to them. In this
case, the robot can move its head to scan the
scene. However, if it scans the right first, the per-
son will be confused and wonder why it did not
look left to take the cup, demanding explanations.
This dynamic environment and such misalign-
ment highlight the importance of developing an
accurate mental model of the robot’s real vision
capability, even when the robot could scan the
scene to find the cup. If people form a correct men-
tal model before the request, it will lead to fewer
explanations and clearer instructions, e.g., asking
“the cup on the right” rather than “the cup”.

In this paper, we aim to address the FoV
discrepancy by FoV indicators, answering “how
would a robot indicate its limited FoV
to align humans’ mental model of robots’
vision capabilities?” Towards this end, we first
explored the design space with a taxonomy from
eye/head space (egocentric designs) to task space
(allocentric designs), informed by the taxonomy,
proposed four indicators, and conducted a human-
subjects study to evaluate them. Specifically, we
designed and registered four augmented reality
(AR) indicators (Fig. 1b) to a Pepper robot and
conducted a human-subjects study (N=41) to
investigate the effects of those designs.

In the study, participants followed four instruc-
tions to assemble a partially built airplane model

with the help of a robot, which participants
requested for objects if they believed the robot
could see the objects. This is part of a human-
robot collaborative task where the robot may not
be able to scan the scene at request time to update
its world model, inspired by the dynamic handover
scenario from our previous work [18]. To sum-
marize, while the robot can scan the scene, such
behavior has three drawbacks: (1) Scanning in the
wrong direction will cause confusion and lead to
an unnecessary demand for explanations; (2) The
robot may not be able to scan the scene to over-
come its limited FoV while busy working on its
part, e.g., manipulation; (3) The scan adds delays
to task completion time.

Among our four designs, the first two can be
physical alterations or additions to the robot, and
the other two were in AR. AR is of interest for four
reasons: (1) Robots’ hardware, e.g., eye socket, is
hard to modify after fabrication and AR allows
overlaying the modification image (see design Eye
Sockets in Fig. 1b); (2) AR allows fast prototyp-
ing for exploring multiple designs and adaptation
to changes in an iterative design process [57]; (3)
AR allows situated visualizations [51] in relevant
contexts, which are the task environment and the
eye area; (4) AR was recently found to be equiva-
lent to their physical counterpart in both objective
and subjective metrics after comparing an AR vs
physical arm attached to a physical mobile robot
in a reference task [19].

1.1 Contribution

In summary, our contributions are fourfold:

1. We proposed a taxonomy and spectrum to
categorize field-of-view indicators from ego-
centric (eye and head space) to allocentric
(task space) indicators for conveying robot
vision capabilities.

2. We proposed and implemented four AR
FoV indicator designs (two egocentric, one
transition-space, one task-space), registered
onto a Pepper robot and its workspace.

3. Through a mixed-design human-subjects
study (N = 41) in a collaborative assem-
bly task, we contribute empirical evidence
regarding accuracy, confidence, efficiency,
and workload. Specifically, we found all four
indicators improved FoV accuracy over the
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Baseline, with Blocks at Task achieving the
highest accuracy and Eye Sockets also rela-
tively accurate; Extended Blocks yielded the
shortest completion time, whereas Blocks at
Task incurred longer but more accurate inter-
actions. Confidence ratings were generally
high and workload was generally low, with no
statistically significant differences among all
designs.

4. To conclude, we contribute six design
guidelines for practitioners who wish to
apply AR indicators or physical alterations
to improve the transparency of robot vision.
As a preview, the design guidelines are
i. Design Guideline 1: Without other AR

indicators, robot designers should design
deeper eye sockets to match each cam-
era’s FoV

ii. Design Guideline 2: If AR situated visu-
alization can be leveraged, robot design-
ers should add FoV indicators at the task
space for nearly perfect accuracy.

iii. Design Guideline 3: Robot designers
should connect AR FoV indicators at the
task space to the eyes for efficiency.

iv. Design Guideline 4: If Extended Blocks
is used alone, robot designers should
be aware that wrong guessers might be
overconfident.

v. Design Guideline 5: Robot designers
should rest assured that although the
highly accurate FoV indicator at the
task space has lower task efficiency, the
workload has remained low.

vi. Design Guideline 6: For mission-critical
collaborative tasks that require accuracy,
the allocentric design like Blocks at Task
should be used.

2 Related Work

2.1 AR for Robotics

Robotics researchers have integrated AR across
multiple domains to enhance HRI. Examples
include AR systems for fault visualization in
industrial robots [5], integration in robotic sur-
gical tools [10], AR-enhanced robotics education
for interaction [44], and fleet management sys-
tems with AR-equipped safety vests that allow
workers to see robots blocked from direct sight

[26]. Particularly, in warehouse environments. Das
and Vyas [10] surveyed the integration of AR/VR
with robotic surgical tools, showing that AR over-
lays increased precision and user comprehension
in complex surgeries. For a comprehensive survey,
we refer readers to [57].

While these works focused on improving per-
formance, interaction, and understanding of the
tasks at hand in various HRI contexts, they did
not address the wrong human mental model of
a robot’s real capabilities like vision. Our work
bridges this gap using AR design elements.

2.2 AR Design Elements for HRI

We explored how AR design elements enhanced
HRI in the past. According to Walker et al.
[57], virtual design elements in AR are visual-
izations that augment robot interactivity, includ-
ing user-anchored visualizations and robot- or
environment-anchored elements. They proposed
four virtual design element categories: Virtual
entities, virtual alterations, robot status visualiza-
tions, and robot comprehension visualizations.

Virtual entities add virtual objects, robots, or
environments to the user’s view. Examples include
“visualization robots” that reveal hidden robot
poses in teleoperation [30, 48]. and digital twins
that help predict future actions by superimposing
picking poses and robot trajectories [31]. These
works show how additional virtual objects can
reveal aspects of robot behavior that are otherwise
invisible; our FoV indicators similarly add virtual
elements so that people know what the robot can
and cannot see.

Virtual alterations modify a robot’s appear-
ance using virtual imagery. For instance, Avalle
et al. [5] used cosmetic alterations to highlight an
industrial robot’s joint in red to draw attention
quickly when a fault occurs (e.g., lifting heavy
objects that exceed payload limitation). Walker
et al. [56] overlaid arrows and eyes to an aerial
robot to signal its navigation intent. Groechel
et al. [16] and Han et al. [19] took this concept
further by adding virtual arms to use gestures to
naturally communicate with humans. Inspired by
this line of work, our Eye Sockets and Near-Eye
Blocks designs alter Pepper’s eye appearance to
communicate its FoV.
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Robot status visualizations communicate the
robot’s internal and external states to users. Inter-
nal visualizations display information like battery
levels or actuator status directly within the user’s
view, e.g., next to a stereo video stream [5, 30].
These visual elements help users monitor the
robot’s condition and identify potential issues such
as sensor malfunctions or actuator faults. Exter-
nal state visualizations provide information about
a robot’s current pose and motion plan, helping
maintain situational awareness [9].

To be described in Section 4, our designs
fall under “Virtual Alterations – Morphological”
(designs 1 and 2) and “Virtual Entities - Envi-
ronmental” (designs 3 and 4). Yet, we focus on
enhancing the comprehension of the robot’s FoV.

2.3 AR for Robot Comprehension

The most relevant category to our work is the
fourth one: Robot comprehension visualizations,
which convey the robot’s beliefs of its environ-
ment and tasks. Frank et al. [13] proposed a mobile
AR interface to show the regions a robot can
physically reach. Rotsidis et al. [49] developed a
debugging tool in AR to show the navigation goals
to enhance the transparency of mobile robots.
In a user study, Rosen et al. [48] additionally
showed that using head-mounted displays to visu-
alize the robot’s motion plan, like arm movements,
improved task accuracy and speed compared to
traditional 2D display methods. For drones, Szafir
et al. [53] explored the design space of visu-
ally communicating the directional intentions of
drones using AR. Together, these studies demon-
strate that AR can effectively reveal a robot’s
planned motions, goals, and reachable space.

Another line of work focuses on conveying
what a robot perceives about the environment to
people, e.g., adding external sensor purviews [57].
Entity labels such as part identifiers, operational
status, and next action steps can be projected
directly into the workspace with projector-based
AR to show the robot’s planned trajectories and
task states, enhancing transparency and coordi-
nation [7]. Kobayashi et al. [29] used AR to over-
lay obstacle representations and decision-making
processes of navigation onto the physical envi-
ronment. Reardon et al. [46] showed how robots
understand and navigate their environment by
aligning visual maps and highlighting key areas or

objects. These approaches make the robot’s per-
ception and plans visible, but they do not directly
address how people understand the limits of a
robot’s FoV in collaborative interaction.

The most relevant work is Hedayati et al.
[21]’s. They developed three teleoperation mod-
els to provide visual feedback on robot camera
capabilities like real-time visual overlays, inter-
active interface elements, and enhanced camera
feeds. However, their work has focused on non-
collocated teleoperation. Our work, while align-
ing with robot comprehension visualizations in
environments, specifically aims to convey robots’
vision capabilities in-situ.

3 Taxonomy and Spectrum

As robots are physically situated in our physical
world, we categorized our designs into four con-
nected areas between the robot and its operating
environment: Eye Space, Head Space, Transition
Space, and Task Space. It formed a spectrum as
shown in Fig. 1b.

Egocentric designs focus on the modifications
at the robot’s eyes, which possess the property of
FoV, or near its head. Examples include designs
1 and 2, directly influencing the robot’s ability to
perceive its surroundings. Expanding rightwards,
transition space includes the design that extends
from the robot into its operating environment,
such as design 3 in Figure 1b. This design bridges
the gap between the robot and the environment.
As the indicator moves closer to the task set-
ting, we hypothesize that this design will better
help people identify the performance effects of
FoV. Finally, design 4 in allocentric in Fig. 1b is
not attached to the robot but rather placed in
its working environment. Spectrum in Figure 1a
offers a visual breakdown of our indicator designs,
emphasizing the continuum from the robot space
to the environment space.

4 Field-of-View Indicators

Based on the taxonomy, we proposed four indica-
tors. Initially, we had nine designs [58]. However,
our pilot studies showed that experiencing four
designs took half an hour, and to avoid fatigue
effects affecting results, we therefore selected one
representative for each space: Eye Sockets (eye
space), Near-Eye Blocks (head space), Extended
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Fig. 2: Illustration of eyeball depth calculation in
the eye socket design to match the robot’s FoV.

Blocks (transition space), and Blocks at Task
(task space). We left the other five designs for
future work and are working on implementing and
evaluating them. The number prefixes below are
the same as in Fig. 1b.

(1) Eye Socket: As an egocentric design, we
deepen the robot’s eye sockets using an AR over-
lay at the existing eye sockets. It creates a deeper
eyeball in the robot’s eyes. As the sockets deepen
with a deeper eyeball, they appear to physically
limit what angle the eyes can see, thus matching
the cameras’ FoV. This design is possible both
physically and in AR, but physical alteration is
difficult after fabrication.

For our implementation, we calculated the eye
socket depth to match the Pepper robot’s 54.4◦

FoV by calculating the angle ∡v based on the
outer dimension of the socket boundaries. Specif-
ically, given the eyeball center as endpoint v, we
form a ray r1 starting from v and passing the left
socket edge, and another ray r2 also starting from
v but passing the right socket edge. The eyeball
was deepened until the angle ∡v = 54.4◦ between
r1 and r2, as seen in Figure 2.

(2) Near-Eye Blocks: We add blocks
directly to the sides of the robot’s eyes to func-
tionally block those outside of the camera’s FoV.
This design is possible both physically and in AR.

(3) Extended Blocks: To more accurately
show the range of the robot’s FoV (e.g., which
objects the robot cannot see), we connect the
blocks from the robot’s head (eye sides) to the task
environment, so people know exactly how wide the
robot can see. Note that this design can only be
practically made possible with AR.

(4) Blocks at Task: An egocentric or task-
centric design is to place the blocks directly in the
robot’s task environment to show the robot’s FoV,
e.g., a table. Unlike Extended Blocks, this is in the
environment rather than connected to the robot.
Note that this design can also only be placed with
AR.

5 Hypotheses

As the indicators are increasingly closer to
the task space, towards the right end of the
spectrum in Fig. 1b, we believe they will bring
task-related and subjective benefits. Thus, we
develop the following four hypotheses (H).

H1: Participants will have a more accurate
mental model of robots’ vision capabilities. This
will be measured by the percentage of correct
guesses of whether objects are within or outside
the robot’s FoV.

H2: Indicators towards the task environment
will improve task efficiency because less time
will be spent on guessing whether the robot can
fulfill the requests or for the robots to ask clarifi-
cation questions.

H3: Participants will be more confident in
their guesses. This will be measured by a seven-
point Likert scale question.

H4: Designs closer to the task environment
will require less cognitive effort. This will be
measured by the well-established NASA Task
Load Index [20, 39].

6 Method

To test our hypotheses, we designed a mixed-
design human-subjects study with five conditions
(Table 1): Baseline (design 0, egocentric), Eye
Sockets, Near-Eye Blocks, Extended Blocks, and
Blocks at Task. The three egocentric indicators
(design {0,1,2}) were tested within subjects using
a balanced Latin square. To avoid learning effects
for the allocentric designs that explicitly reveal
the robot’s FoV, each participant experienced only
one allocentric indicator (design {3,4}), yield-
ing a between-subjects comparison for these two
conditions.
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Table 1: Counterbalanced order-
ing to control ordering effect: Latin
square ordering for design {0,1,2},
and, then, fully counterbalanced
ordering for design {3,4} because
design {3,4} reveals the FoV.

Participant {0,1,2} Order {3,4} Order

1 0, 1, 2 3
2 1, 2, 0 4
3 2, 0, 1 3
4 0, 1, 2 4
5 1, 2, 0 3
6 2, 0, 1 4
... ... ...

(a) Assembly Parts (c) Assembled Airplane Model

(b) Tools

Fig. 3: The toolkit used in our collaborative task.
(Product photo [28] used under Fair Use.)

6.1 Apparatus and Materials

Robot Platform: We used a Pepper robot [42]
manufactured by Aldebaran. It is a two-armed,
1.2m (3.9ft) tall humanoid robot. Its narrow hor-
izontal FoV is 54.4◦ [4], commonly seen in other
robots like Fetch [47, 61].

AR Display: Participants wore a Microsoft
HoloLens 2, an optical see-through head-mounted
display [37]. It has a 43◦×29◦ FoV and 2048×1080
resolution per eye. To compensate for the lim-
ited FoV, participants were instructed to move
along the table to check the design from multiple
perspectives.

Toolkit Set: A toolkit set [28] was used for an
airplane model assembly task. It has six types of
tools (2 wrenches, 2 screwdrivers, 1 plier, 1 ham-
mer, 1 saw, and 1 ruler) as shown in Figure 3 part
(b) and five types of assembly parts (9 assembly

pieces, 3 building blocks, 4 wheels, 6 bolts, and 5
nuts) as shown in Figure 3 part (a).

Tables and Object Placement: Two 182cm
× 76cm tables [38] (Fig. 4) were placed in front
of the robot (robot table) and participants (task
table). To mimic real-world settings, we ran-
domly clustered 12 objects taken from the toolkit
with different object orientations. With tape, we
marked the positions of the objects, tables, and
the robot to ensure consistency across all condi-
tions throughout the experiment.

6.2 Task

As seen in Fig. 5, participants were tasked to
follow four instructions to finish a partially assem-
bled airplane using four objects on the robot table
(see Fig. 6): A red screw, a red screwdriver, a blue
screw, and a yellow screwdriver. They were asked
to guess whether Pepper could see each object,
i.e., whether it was within the robot’s FoV. If they
believed so, they said they wanted the robot to
hand it. Otherwise, they said they wanted to take
it themselves.

To avoid ordering effects, we used a balanced
Latin Square for the ordering of the instruc-
tions and, thus, the ordering of the corresponding
objects. To mimic the real-world placements of the
four objects for ecological validity, we flipped the
yellow screwdriver’s visibility as explained in Fig.
6.

6.3 Implementation

For implementation, we developed all AR indi-
cators in Unity. They precisely matched their
physical dimensions and positions of the robot and
the task-related objects. To register them onto the
physical robot, we used the Vuforia Engine [45]’s
tracking capability by attaching a QR code on
the robot’s chest screen. To achieve visual coher-
ence, we attached an invisible phantom model of
the robot’s head to disable rendering the part of
the AR indicators occluded by the robot’s physi-
cal head. To register the other ends of Extended
Blocks and Blocks at Task to the table, we placed
another QR code in the middle of the table.

As shown in Fig 7, we also implemented a
menu for HoloLens 2 using Unity. It has different
buttons to switch between different indicators. A
participant can choose an indicator by selecting
with a finger, and the indicators will be displayed
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Fig. 4: Experiment setup. Left Task Table: Two pre-assembled parts for participants to start building
the airplane model. Participants sat approximately 3.3 meters away so they could see the indicators in
full. Right Robot Table: Objects within the robot’s reach and needed to finish assembly.

    1. Find red screw.                     2. Find red screwdriver to insert red screw.

    3. Find blue screw.            4. Find yellow screwdriver to insert blue screw.

Fig. 5: Four assembly steps to build the airplane
model.

on the robot or in the task environment after
scanning the QR codes.

6.4 Procedure

Upon arrival, each participant completed an
informed consent form. Once agreed to par-
ticipate, they completed a demographic survey
and watched three videos to learn how to wear
HoloLens 2 [43], how to choose different designs
by pointing through buttons and how to scan the
QR codes [2], and how to read the instructions [1].
Experimenters then briefly reintroduced the task
and asked clarification questions.

Next, participants scanned the QR codes on
the robot’s chest and the table to register the
designs. While facing away from the robot, they

sat on a wheeled chair and read a page to under-
stand the assembly goal and then read the fol-
lowing assembly instruction page. Once ready,
they pressed the numbered button on the AR
menu (Figure 7) corresponding to the condition
assigned by the experimenter and turned to face
the robot to start the task. The full condition
name was abbreviated to avoid influencing partic-
ipants’ decisions on what the robot can see. To
ensure participants see the designs fully, partici-
pants sat approximately 3.3 meters away from the
robot and were asked to move the chair along the
1.82-meter-wide table [38] to check the design from
multiple perspectives. If they believed the robot
could see the object, they said they wanted the
robot to hand it. Otherwise, they said they wanted
to take it themselves. After each condition, they
filled out the confidence and workload question-
naires. They repeated this process until all four
instructions were done and the airplane model
was assembled. While finishing each step, exper-
imenters did not reveal participants whether the
robot could actually see the tool. This is to prevent
participants from knowing the robot’s FoV.

It took an average of 30:18 minutes to finish
the study, and each participant was paid US$10
gift card as compensation.

6.5 Data Collection and Measures

Accuracy was calculated as the percentage of
correct requests among all requests, whether they
correctly guessed the object within or outside FoV.
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Fig. 6: The four clustered objects needed for assembly (red circled), shown in Extended Blocks design.
From left to right, red screwdriver is out of FoV. Red screw, blue screw, yellow screwdriver are within
FoV. The yellow screwdriver is changed to outside-FoV half of the time by moving it to the right to mimic
real-world cluster scenarios.

Fig. 7: AR menu interface with four design but-
tons for participants to select. The four buttons
are labeled only with numerical IDs and short
abbreviations (ES, NEB, EB, BT). Participants
were told which number to press for each trial and
were not told what the abbreviations stand for to
avoid influencing their decision on what the robot
can see from the full condition names.

Instruction completion time was coded from
the videos frame by frame from when the partic-
ipants turned around to face the robot to when
they said either they wanted the robot to get the
tool or wanted to get it themselves. After outlier
analysis, we removed intervals of more than 30
seconds, an excessive amount of time for a guess.
The distribution of further details on the outlier
analysis can be found in Appendix A.1. For the

Perfect Agreement (0.8)

0.6

0.7

0.8

0.9

1.0

3 (0.1s) 6 (0.2s) 9 (0.3s) 12 (0.4s) 15 (0.5s)

Frame Difference (Time Difference)

K
ap

pa

Fig. 8: Cohen’s κ values for video coding show
above perfect intercoder agreement [32] when
frame difference is 9 (0.3s).

NASA Task Load Index [20, 39] measuring cog-
nitive effort, we used both the load survey and
its weighting component to calculate a weighted
score. In the seven-point Likert scale to measure
confidence, participants were asked how confi-
dent they believed the robot could see the object:
“I was confident that the robot can see the tool
or the object needed”. We reversed the scores if
they wanted to get the object themselves. Addi-
tionally, we asked a free-response question to
seek qualitative feedback for them to explain their
responses.

For completion time, two coders coded the
videos frame by frame for the start and end of
following an instruction. They jointly coded a ran-
dom 10% of the videos and the rest 90% were
coded solely by the other coder. Because the
videos were shot at 30 frames per second, the inter-
rater agreement depends on the allowable frame
difference chosen. Shown in Figure 8, we achieve
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a κ value over 0.8 (almost perfect agreement [32])
when the frame difference is 9 (0.3 seconds).

6.6 Data Analysis

Our data analysis used a Bayesian analysis frame-
work [55], which allows us to quantify evidence
for and against competing hypotheses, including
the null hypothesis (H0). Unlike the Frequentist
approach, which cannot provide evidence in favor
of H0, the Bayesian method uses the Bayes Factor
(BF) to compare the likelihood of data under two
competing hypotheses: H1 (x̄1 ̸= x̄2, presence of
an effect) and H0 (x̄1 = x̄2, absence of an effect).
For instance, BF10=5 means that the data is five
times more likely to occur under H1 than H0, thus
supporting H1.

We also used a credible interval (CI) instead of
Frequentist’s confidence interval, a random inter-
val that contains the estimated parameter of γ%
of the time. A credible interval provides a direct
probability statement, i.e., α% probability that
the parameter would fall in the interval.

To interpret the results of our Bayes Factor
analyses, we used the widely accepted discrete
classification scheme proposed by Lee and Wagen-
makers [33]. For evidence favoring H1, a Bayes
factor BF10 is deemed anecdotal (inconclusive)
when BF10∈(1,3], moderate when BF10∈(3,10],
strong when BF10 ∈(10,30], very strong when
BF10∈(30,100], and extreme when BF10∈(100,∞).
Anecdotal evidence is considered inconclusive
while others are conclusive.

In the opposite, for evidence favoring H0,
i.e., against H1, the intervals are inverted: Anec-
dotal (inconclusive) when BF01∈(1,3], moderate
when BF01∈(3,10], strong when BF01∈(10,30],
very strong when BF01∈(30,100], and extreme
when BF01∈(100,∞).

For frequency data, we ran Bayesian multi-
nomial and post hoc binomial tests. We also
ran Bayesian repeated measures ANOVA tests to
analyze the repeatedly measured conditions, i.e.,
designs {0,1,2}, {0,1,2,3} and {0,1,2,4} because
participants only experienced one allocentric
design (design 3 or 4) after all egocentric designs.
When BF10 or BF01 ∈[1,3] or (i.e., inconclusive),
we ran post hoc t-tests for pairwise comparisons.
For designs 3 and 4, we ran an independent sample
t-test.

6.7 Participants

41 participants were recruited from the authors’
institution through flyers. In a free-form response
question, 27 (66%) identified as male, 14 (34%)
identified as female, and none reported other
gender identities. Age ranges from 18 to 30
(M=21, SD=2.9). For racial data, they were about
half Asian (19, 46.3%) and one-third White (13,
31.7%), while five (12.2%) were Latino/Hispanic
identities, two (4.9%) were Black, and two (4.9%)
reported multi-racial. Experience with robots and
AR was measured on 7-point Likert items (‘I have
experience using robots’; ‘I have experience using
augmented reality’). For robots, 21 participants
(51.2%) agreed (ratings 5–7), six (14.6%) were
neutral (rating 4), and 14 (34.1%) disagreed (rat-
ings 1–3). For AR, 23 (56.1%) agreed, five (12.2%)
were neutral, and 13 (31.7%) disagreed.

7 Results

We ran all Bayesian tests in an open-source statis-
tics program JASP 0.19.0 [22]. Table 2 summarizes
the means and standard deviations for accuracy,
completion time, confidence, and cognitive effort
across all conditions.

In brief, all indicators improved accuracy over
the Baseline, with Blocks at Task achieving the
highest accuracy (95%) and Eye Sockets also per-
forming well (85%). Extended Blocks yielded the
shortest completion times on average, whereas
Blocks at Task took longer despite its high
accuracy. Confidence ratings were generally high
(around 5.3–6.2 on a 7-point scale) and showed no
differences between conditions. NASA-TLX work-
load scores were low across all designs (around
20–25 on a 0–100 scale) and did not differ between
conditions. In the following subsections, we report
the detailed Bayesian analyses.

7.1 Accuracy

As shown in Figure 9, accuracy ranges from 66%
to 95%. We first conducted a Bayesian multi-
nomial test [15] on the frequency data with
equal proportions, revealing extreme evidence
(BF10=8.582×106) favoring an effect. We thus
conducted post-hoc Bayesian binomial tests [41]
with one-sided alternative hypotheses (H1) that
the proportion is larger than 50% for all condi-
tions.
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Table 2: Means and Standard Deviations (SD) for all measures across all conditions.

Measure Baseline Eye Sockets Near-Eye Blocks Extended Blocks Blocks at Task

Accuracy 66% 85% 71% 81% 95%

Completion Time (s) 9.615 ± 6.565 10.978 ± 7.997 9.545 ± 6.408 6.550 ± 3.238 11.418 ± 6.235

Confidence 5.732 ± 1.073 5.610 ± 1.202 5.317 ± 1.572 6.190 ± 1.569 5.850 ± 1.137

Cognitive Effort 24.244 ± 17.095 25.439 ± 17.496 22.675 ± 17.058 22.778 ± 16.503 20.400 ± 17.654
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Fig. 9: Accuracy percentages across different con-
ditions, showing the proportion of correctly made
requests to the robot to hand over objects within
its FoV relative to total requests made. The Blocks
at Task condition is the most accurate.

Results showed an inconclusive anecdotal evi-
dence (BF10=2.907) favoring H1 in Baseline.
This suggests that there probably is an effect,
but if there was, it would be that the data
is 2.907 times likely under H1, but more data
would be needed to fully confirm such an effect.
Otherwise, results revealed conclusive evidence
favoring H1 for all the frequency data in all
other conditions: Extreme evidence for Eye Socket
(BF10=23288.748), strong evidence for Near-Eye
Blocks (BF10=13.205), very strong evidence for
Extended Blocks (BF10=31.785), and extreme
evidence for Blocks at Task (BF10=4993.167).

7.2 Completion Time

The mean completion time (Figure 10) ranges
from 6.55 to 11.418 seconds: Baseline (M=9.615,
SD=6.565, 95% CI: 7.457, 11.773), Eye Socket
(M=10.978, SD=7.997, 95% CI: 8.349, 13.606),
Near-Eye Blocks (M=9.545, SD=6.408, 95%
CI: 7.376, 11.713), Extended Blocks (M=6.550,
SD=3.238, 95% CI: 4.989, 8.110), and Blocks
at Task (M=11.418, SD=6.235, 95% CI: 8.413,
14.424).

As we planned to use Bayesian repeated mea-
sures ANOVA (RM-ANOVA) [50], we assessed
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Fig. 10: Mean completion time across different
conditions. Error bars show 95% credible inter-
val (CI): Baseline [7.457, 11.773], Eye Socket
[8.349, 13.606], Near-Eye Blocks [7.376, 11.713],
Extended Blocks [4.989, 8.11], Blocks at Task
[8.413, 14.424]. Strong evidence (BF10=14.242)
favors a difference between Extended Blocks and
Blocks at Task. Moderate evidence (BF01 ∈ [4.161,
7.513]) favors no differences among other pairwise
comparisons.

the normality of the data by inspecting the Q-Q
(Quantile-Quantile) plots of all conditions, a well-
accepted practice among Bayesianists [55]. As we
found violations of normality and linearity, we log-
transformed the data and successfully addressed
them.

A Bayesian RM-ANOVA on designs {0,1,2}
revealed moderate evidence (BF01=4.161) favor-
ing the null hypothesis H0, which means there
is no difference among Baseline, Eye Socket, and
Near-Eye Blocks in completion time. Compar-
ing Extended Blocks with the first three designs,
a Bayesian RM-ANOVA on designs {0,1,2,3}
showed moderate evidence (BF01=7.513) against
an effect of completion time among Baseline, Eye
Socket, Near-Eye Blocks and Extended Blocks.
Similarly, when comparing Blocks at Task with
the first three designs, a Bayesian RM-ANOVA
on design {0,1,2,4} revealed moderate evidence
(BF01=5.375) against an effect of completion time
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Fig. 11: Mean confidence rating across differ-
ent conditions. Error bars show 95% CI: Baseline
[5.393, 6.070], Eye Socket [5.230, 5.989], Near-
Eye Blocks [4.821, 5.813], Extended Blocks [5.476,
6.905], Blocks at Task [5.318, 6.382]. Results favor
no differences among all pairwise comparisons
(BF01 ∈ [3.418, 3.915]) except for Extended Blocks
and Blocks at Task (BF01=2.545).

among Baseline, Eye Socket, Near-Eye Blocks,
and Blocks at Task.

Finally, for comparison between Extended
Blocks (M=6.550; 95% CI: 4.989, 8.110) and
Blocks at Task (M=11.418; 95%CI: 8.413, 14.424),
a Bayesian independent samples t-test revealed
strong evidence favoring a difference (4.868;
BF10=14.242).

7.3 Confidence

As shown in Figure 11, mean confidence rat-
ings range from 5.32 to 6.19 out of 7:
Baseline (M=5.732, SD=1.073, 95% CI: 5.393,
6.070), Eye Socket (M=5.610, SD=1.202, 95%
CI: 5.230, 5.989), Near-Eye Blocks (M=5.317,
SD=1.572, 95% CI: 4.821, 5.813), Extended
Blocks (M=6.190, SD=1.569, 95% CI: 5.476,
6.905), and Blocks at Task (M=5.850, SD=1.137,
95% CI: 5.318, 6.382).

A Bayesian RM-ANOVA on designs {0,1,2}
revealed moderate evidence (BF01=3.915) against
any difference in confidence among Baseline, Eye
Socket, and Near-Eye Blocks. When comparing
Extended Blocks with the first three designs,
a Bayesian RM-ANOVA on designs {0,1,2,3}
showed moderate evidence (BF01=3.418) against
an effect of confidence among Baseline, Eye
Socket, Near-Eye Blocks, and Extended Blocks.
Similarly, when comparing Blocks at Task with
the first three designs, a Bayesian RM-ANOVA
on designs {0,1,2,4} showed moderate evidence
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Fig. 12: Mean weighted workload. Error bars
show 95% CI: Baseline [18.848, 29.640], Eye
Socket [19.916, 30.962], Near-Eye Blocks [17.290,
28.060], Extended Blocks [15.266, 30.290], Blocks
at Task [12.138, 28.662]. Results favor no differ-
ences among all pairwise comparisons (BF01 ∈
[3.019,5.368]), except for Extended Blocks and
Eye Socket (BF01=1.406).

(BF01=3.582) against an effect of confidence
among Baseline, Eye Socket, Near-Eye Blocks,
and Blocks at Task.

Finally, a Bayesian independent samples t-
test on confidence between Extended Blocks
and Blocks at Task revealed anecdotal evidence
(BF01=2.545) favoring no difference, suggesting
that there probably is no such effect, but if there
was, it would be that participants would be 2.545
more likely to be equally confident in Extended
Blocks and Blocks at Task. More data would be
needed to fully rule out such an effect.

7.4 Cognitive Effort

Shown in Figure 12, mean workloads are low
and range from 20.4 to 25.4 in 100: Base-
line (M=24.244, SD=17.095, 95% CI: 18.848,
29.640), Eye Socket (M=25.439, SD=17.496,
95% CI: 19.916, 30.962), Near-Eye Blocks
(M=22.675, SD=17.058, 95% CI: 17.290, 28.059),
Extended Blocks (M=22.778, SD=16.503, 95% CI:
15.266, 30.290), and Blocks at Task (M=20.400,
SD=17.654, 95% CI: 12.138, 28.662).

A Bayesian RM-ANOVA on designs {0,1,2}
revealed moderate evidence (BF01=5.368) against
any difference among Baseline, Eye Socket, and
Near-Eye Blocks. Comparing Extended Blocks
with the first three designs, a Bayesian RM-
ANOVA on designs {0,1,2,3} showed anecdo-
tal evidence (BF01=2.91) against a difference
among Baseline, Eye Socket, Near-Eye Blocks,
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and Extended Blocks. We thus ran post-hoc t-tests
that revealed moderate evidence (BF01=4.186)
against a difference between Extended Blocks
and Baseline, anecdotal evidence (BF01=1.406)
between Extended Blocks and Eye Socket,
and moderate evidence (BF01=4.043) between
Extended Blocks and Near-Eye Blocks. Compar-
ing Blocks at Task with the first three designs,
a Bayesian RM-ANOVA on designs {0,1,2,4}
showed moderate evidence (BF01=4.865) against
a difference among Baseline, Eye Socket, Near-Eye
Blocks, and Blocks at Task.

Finally, for comparison between Extended
Blocks and Blocks at Task, a Bayesian indepen-
dent samples t-test revealed moderate evidence
(BF01=3.019) against a difference in workload
between Extended Blocks and Blocks at Task.

8 Discussion

8.1 Hypothesis One: Accuracy

Our first hypothesis was that as the indicators
got closer to the task space, participants would
develop a more accurate mental model of the
robot’s FoV. Shown in Figure 9, H1 was mostly
supported except for Eye Socket, which was also
relatively accurate (85%).

Without any FoV indicators, Baseline accu-
racy was only 66%, indicating that about one in
three participants misunderstood the range of the
robot’s FoV and had a wrong mental model of the
robot’s vision capabilities. The simple Near-Eye
Blocks also did not help: about 30% participants
made the wrong guesses. Although functionally
blocking the robot’s FoV, it was not transferred
to the task space, i.e., where it lies within or out
of FoV on the table.

Surprisingly, the Eye Socket design is more
accurate than Near-Eye Blocks and Extended
Blocks. This may be because the deepened eye
socket is more natural and human-like, serving
a familiar reference point to participants’ own
eyes, allowing them to imagine the robot’s limited
vision range from their own. As the more accurate
Blocks at Task design must be AR, we pro-
pose Design Guideline 1: Without other AR
indicators, robot designers should design
deeper eye sockets to match each camera’s
FoV.

The Extended Blocks design had a lower accu-
racy rate (81%) than Blocks at Task (95%).
After analyzing the free-form responses from the
four participants who were wrong, we found that
triangle-shaped panels were perceived as two 3D
cones for its peripheral vision projected from eye
sides (P25:“I could see his vision more clearly
with the simulated cones”), and thought the
robot could only see the objects within the cones
(P13:“... the robot could see it because the flare
illuminated the red screwdriver.”). For the out-of-
view tools occluded by the panels but appeared
inside the cones, they thought that these objects
were within the robot’s FoV. For the tools within
FoV but not in the cones, they believed they were
out of the FoV (P25:“the screwdriver was not
within the cone, so I assume he could not see it.”).

The triangle-panel-to-cone misconception
reveals a problem with optical see-through AR
devices like HoloLens 2, where the virtual con-
tent is light reflected onto the optical lenses,
appearing semi-transparent, and, thus, cannot
fully occlude physical objects (i.e., light cannot
block light). That is, participants can still see the
objects through the AR panels (P21:“the robot
had the desired tool highlighted”), and therefore
incorrectly thought those tools were covered by
the simulated cones, leading them to the wrong
decision.

One solution is to use video see-through
devices like Apple Vision Pro, instead of optical
see-through devices, so those out-of-FoV objects
can be fully occluded. Another solution is to
use rectangular blocks rather than triangle blocks
that people treat as cones, or the Blocks at Task
design solely in the task space. Future work should
examine these solutions.

To conclude, our accuracy results showed that
the indicator at the task space helped understand
the robot’s vision capabilities the most. Thus,
we propose Design Guideline 2: If AR situ-
ated visualization can be leveraged, robot
designers should add FoV indicators at the
task space for nearly perfect accuracy.

8.2 Hypothesis Two: Task Efficiency

Our second hypothesis was that indicators closer
to the task space would enhance task efficiency,
measured by completion time. H2 is almost unsup-
ported: Results favor no difference among all pairs,
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except for strong evidence supporting a difference
between Extended Blocks and Blocks at Task.

Compared with Extended Blocks, Blocks at
Task is a task-centric allocentric design, which dis-
connects, or lacks transition, from the eyes. We
observed some participants spend time connecting
this design back to the robot’s FoV. They were
thinking for a while about the use of this design
when they first saw them. P18 explained the con-
nection process, “I didn’t think those walls would
be there. This added ... uncertainty. I ... modeled
my arms as the walls. I couldn’t see my screw-
driver, so I assumed the robot couldn’t see it’s
screwdriver either.” This may explain why partic-
ipants spent five seconds fewer in Extended Blocks
that connect back to eyes. Indeed, other AR works
within HRI had similar findings, e.g., robots refer-
ring to objects by AR circles delayed completion
time due to the connection process despite being
more accurate [8].

Although participants spent more time on
Blocks at Task, the accuracy was the highest.
Thus, we still retain Design Guideline 2. However,
with the efficiency benefit, we propose Design
Guideline 3: Robot designers should con-
nect AR FoV indicators at the task space
to the eyes for efficiency.

8.3 Hypothesis Three: Confidence

Our third hypothesis was that indicators closer
to the task space would enhance confidence in
gauging the robot’s FoV. H3 is almost unsup-
ported: Results favor no difference among all pairs
except for anecdotal evidence against a difference
between Extended Blocks and Blocks at Task.
This indicates that proximity to the task environ-
ment did not affect confidence, reinforcing design
guidelines 1 and 2.

We conducted an additional analysis of confi-
dence levels among participants who made incor-
rect decisions. Under Extended Blocks, those who
were wrong were still highly confident, scoring 6.5
out of 7. This suggests that Extended Blocks led
to overconfidence in incorrect assumptions. In con-
trast, Baseline, Eye Socket, and Near-Eye Blocks
had lower confidence in their wrong guesses, 5.57,
5.5, and 5.25, respectively (As only one partici-
pant was wrong in Block at Tasks, we omitted its
confidence value). These numbers roughly match
the overall confidence shown in Fig. 11. Thus,

we propose Design Guideline 4: If Extended
Blocks is used alone, robot designers should
be aware that wrong guessers might be
overconfident.

8.4 Hypothesis Four: Workload

Our last hypothesis was that designs closer to
the environment would reduce cognitive effort. H4
is almost unsupported: Results favor no differ-
ence among all pairs except for anecdotal evidence
against a difference between Extended Blocks and
Eye Socket.

Results showed low workloads in all conditions,
capped at 25.4/100. This also includes Blocks
at Task: Although participants spent more time
guessing, the workload has not increased. A likely
reason for the low workload scores across all indi-
cators is that guessing the FoV itself is not a
demanding task, although different FoV indica-
tors made differences in the previous three aspects
just discussed like completion time. Thus, we
propose Design Guideline 5: Robot design-
ers should rest assured that although the
highly accurate FoV indicator at the task
space has lower task efficiency, the work-
load has remained low.

8.5 General Discussion

Generally, our findings showed three designs
helped address people’s misunderstanding about
a robot’s FoV. For allocentric designs at the task
space, Blocks at Tasks is the most accurate but
at a completion time cost. Extended Blocks is
promising but the triangle-panel-to-cone miscon-
ception needs to be solved, after which it will
combine both accuracy and efficiency benefits. For
egocentric designs at the eyes and head space,
Near-Eye Blocks did as bad as Baseline, while sim-
ple Eye Socket deepening, providing cues about
its FoV possibly by physical alteration, improved
accuracy.

Finally, based on the results, we propose
an application-specific Design Guideline 6:
For mission-critical collaborative tasks that
require accuracy, the allocentric design like
Blocks at Task should be used.
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Fig. 13: Familiar body-language indicators of a
robot’s FoV that we are currently exploring.

8.6 Limitations and Future Work

Besides the limitation of task design on work-
load, we focused on addressing the misunderstand-
ing of robots’ horizontal FoV. Yet, robots also
have different vertical FoV (e.g., Pepper’s 44.6◦

[4], Fetch’s 45◦ [47, 61]) than human’s (160◦).
Although we tend to have a 2D workspace like a
table at a fixed height, this discrepancy is sim-
ilarly problematic as human-robot collaboration
happens in a narrow workspace where, e.g., robots
need to work near a multi-shelf organizer. In those
cases, people will expect robots to see objects on
multiple shelves while the robot can only see one
or two shelves. Future research should investigate
this as they are common in industrial scenarios
like warehouses or factories.

Secondly, thanks to AR situated visualiza-
tion, there is a growing interest in leveraging
AR for HRI [19, 23, 34, 54, 56]. However, AR
devices may not always be available. While the
first two designs can be incorporated by physical
alteration or addition, we have started exploring
familiar body language as FoV indicators [59].
As shown in Figure 13, they are an egocentric
Near-Eye Hands design, raising hands directly
to the sides of its eyes to reveal FoV, and a
transition-space allocentric Extended Arms design
that extends both arms forward, similar to the AR
Extended Blocks. Together with our Eye Socket
and Near-Eye Blocks designs that also do not
require AR, one can evaluate these four designs
for non-AR scenarios to provide more insights.
For the measures, a design preference question
with an optional explanation can be asked as
well as how the robot itself would be perceived
is also of interest. Besides body language, a fifth
design possibility is to leverage projector-based
AR. Rather than head-mounted AR displays or
physical alteration, this design uses an overhead

projector to project lines onto the robot’s operat-
ing environment to indicate the robot’s FoV. This
projected AR technology frees interactants from
wearing head-mounted displays or holding phones
or tablets, thus making it ergonomic and scal-
able to a crowd, beneficial in group settings. We
believe these designs will achieve higher positive
perceptions as they are more familiar designs and
activate human-human interaction patterns.

Thirdly, while we focused on manipulation in
human-robot collaboration that often happens in
controlled environments like factories, a robot may
navigate and look around frequently in settings
like warehouse floors, shopping malls [11], and
retail stores [12]. In these contexts, a robot has
more opportunity to adjust its view to overcome
its limited FoV during navigation tasks. People in
those more unstructured and naturalistic environ-
ments also allow investigation into spontaneous
reactions and behaviors during a robot’s naviga-
tion tasks. Thus, there is a knowledge gap on how
navigation and the search behavior in these set-
tings would affect people’s perception of a robot’s
real vision capabilities. Future work with tasks
in these scenarios can further expand our design
guidelines.

Fourthly, our study evaluates FoV indicators
along the continuum of our spectrum. It might be
desirable to combine the FoV indicators at the two
ends of the continuum, i.e., the pure egocentric
deepened eye sockets together with the pure allo-
centric Blocks at Task design. The combination
could further strengthen people’s mental mod-
els, e.g., bringing the effectiveness benefit Blocks
at Task (95% accuracy) to deepened eye sockets
(95%), similar to what Brown et al. [8] have done
to combine different forms of mixed reality deic-
tic gestures. However, adding indicators at two
distant places may distract interactants’ atten-
tion. Thus, exploring such combinations and their
potential benefits and tradeoffs is a promising
direction for future design work.

Finally, the participant sample is dispropor-
tionately well-educated young Asian/White men
(12 women and 26 men). They are more likely
to have experienced robotic and AR technolo-
gies than other populations, as confirmed by our
data: Both were over 50%. This gender imbal-
ance may influence the study’s conclusions and
suggest a need for future research should address
this disproportionality, e.g., reproducing in other

15



cultures and involving more women to match the
world average 1.07 male/female ratio at birth [3].
Additionally, similar to what we discussed in the
third point regarding context, robots have a wide
range of applications targeting different popula-
tions, future work would investigate, e.g., K-12
students in education settings [6] or older adults in
healthcare settings [27] who may experience cogni-
tive decline like Alzheimer’s Disease and Related
Dementias (ADRD) to see the age’s influences on
the conclusions, particularly cognitive load.

9 Conclusion

In this work, we designed four egocentric and
allocentric AR FoV indicators, from the eye to
head to the task space, and conducted a human-
subjects study to investigate their performance
and participants’ experience in a collaborative
HRI task. Confirming an inaccurate mental model
from Baseline accuracy, our results showed that
deeper Eye Socket, Extended Blocks, and Blocks
at Task all helped align human expectations with
the robot’s actual FoV, enabling participants to
develop a more accurate mental model of robots’
vision capabilities. Results showed nearly per-
fect accuracy for the allocentric AR indicator of
Blocks at Task and high accuracy for the ego-
centric Eye Socket design possible for physical
alteration, while confidence and workloads are
more than acceptable. We also provided concrete
design guidelines on how to best apply FoV indica-
tors that improve transparency and collaboration
between humans and robots. Looking forward, our
work opens new avenues for further exploration in
robot transparency and expandability.
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Appendix A Additional
Figures

A.1 Completion Time Before and
After Outlier Analysis

In our study, completion time measured how long
participants took to judge whether the robot could
see an object. To mitigate the large effects of out-
liers on the competition time data (see Figure A1),
we excluded response times exceeding 30 seconds.
Figure A1 shows completion time before outlier
removal and Figure A2 presents the data after
outlier removal.

A.2 Confidence Across Conditions

Our study followed a 1×5 design, where Baseline,
Eye Socket, and Near-Eye Blocks were within-
subject conditions, meaning all participants expe-
rienced these three egocentric designs. Because
allocentric designs (Extended Blocks and Blocks
at Task) revealed the robot’s FoV, they were
tested as between-subject conditions, with each
participant experiencing only one of the two allo-
centric indicators after completing all egocentric
ones.

Figures A3-A6 illustrate confidence distribu-
tions across different conditions. Figure A3 shows
confidence ratings comparison among within-
subject conditions (Baseline, Eye Socket, Near-
Eye Blocks). Figure A4 adds the Extended Blocks
condition, compare it with the three within-
subject conditions. Figure A5 adds Blocks at
Task condition, compare it with the three within-
subject conditions. Figure A6 compares Extended
Blocks and Blocks at Task.

A.3 Cognitive Effort

Figures A7-A10 illustrate workload distributions
across different conditions. Figure A7 shows work-
load comparison among within-subject condi-
tions (Baseline, Eye Socket, Near-Eye Blocks).
Figure A8 adds the Extended Blocks condition,

compare it with the three within-subject condi-
tions. Figure A9 adds Blocks at Task condition,
compare it with the three within-subject condi-
tions. Figure A10 compares Extended Blocks and
Blocks at Task.
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Fig. A1: Completion time before outlier removal, showing raw distributions across all experimental
conditions.

Fig. A2: Completion time after outlier removal, filtering out responses exceeding 30 seconds.

Fig. A3: Confidence ratings across Baseline, Eye Socket, and Near-Eye Blocks conditions.
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Fig. A4: Confidence ratings across Baseline, Eye Socket, Near-Eye Blocks and Extended Blocks condi-
tions.

Fig. A5: Confidence ratings across Baseline, Eye Socket, Near-Eye Blocks and Blocks at Task conditions.

Fig. A6: Confidence ratings for Extended Blocks vs. Blocks at Task.
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Fig. A7: Workload across Baseline, Eye Socket, and Near-Eye Blocks conditions.

Fig. A8: Workload across Baseline, Eye Socket, Near-Eye Blocks and Extended Blocks conditions.

Fig. A9: Workload across Baseline, Eye Socket, Near-Eye Blocks and Blocks at Task conditions.

Fig. A10: Workload for Extended Blocks vs. Blocks at Task.
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