

Designing Indicators to Show a Robot's Physical Vision Capability

The RARE Lab, Department of Computer Science and Engineering, University of South Florida, USA

(7) Projected Lines

(5) Extended Blocks

(6) Blocks at Task

(8) Diminished Environment

(9) Dim Environment

Do you know robots have much narrower views than humans?

- Study shows that we can mistake a robot's field of view (~60°) the same as ours (>180°), forming an inaccurate mental model.
- This is problematic! We will ask robots to do impossible tasks about out-of-view objects!
 - It is crucial to align our mental models of robots.

- Beside these indicators, we proposed a **design** taxonomy and spectrum to group our designs.
- The spectrum shows a continuum from the robot space to the environment space in the physical world.

Takeaways & Next Steps

- We designed 9 indicators to show a robot's vision capability, aligning our wrong mental models.
- We thus designed **9 situated augmented reality** (AR) indicators to reveal its real vision capability.
 - Why AR? The robot's hardware is hard to modify. It allows fast prototyping to explore design space.
- We plan to register them onto the robot and conduct user studies to narrow down as well as evaluate our designs (e.g., accuracy, efficiency).

THE 31st IEEE CONFERENCE ON VIRTUAL REALITY AND 3D USER INTERFACES

