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Abstract—Humans often assume that robots share the same
field of view (FoV) as themselves, given their human-like ap-
pearance. In reality, robots have a much narrower FoV (e.g.,
Pepper robot’s 54.4◦ and Fetch robot’s 54◦) than humans’ 180◦,
leading to misaligned mental models and reduced efficiency in
collaborative tasks. For instance, a user might place an object
just outside the robot’s narrow FoV, assuming it can see but only
to find the robot failing to retrieve it, resulting in confusion and
disappointment, thus hindering human-robot interaction (HRI).
To address this gap, we propose five indicators to proactively
communicate the robot’s FoV. Rooted in familiar human experi-
ences, the proposed designs span egocentric (robot-oriented) to
allocentric (task-oriented) spaces: Glasses in the eye space are
designed to physically block areas outside FoV, while gestures
from head space (raise hands to eye sides) to task space (extend
arms to workspace) dynamically indicate the vision range, with
the head-mounted projector spotlights the FoV directly at the
workspace. We will compare these designs with three baseline
conditions in common modalities: No indicator, image on screen,
and voice announcement. Through a kitting task, we will gather
objective metrics for task performance (error rate, reaction time)
and subjective perceptions to gauge user experience (likability,
trust). Our future results will guide designers in integrating
those designs for clear FoV communication, fostering efficient
and trustworthy human-robot teams.

Index Terms—System transparency, robot explainability, robot
design, vision capability, field of view (FoV), human-robot inter-
action (HRI)

I. INTRODUCTION

Imagine a busy office where a humanoid robot is assisting
employees by fetching supplies. A colleague places a box just
beyond the robot’s line of sight, expecting it to detect and
deliver the box on its own. When the robot fails to detect the
object, confusion arises: Why cannot it see what is obviously
visible to humans?

This disconnect is rooted in a fundamental misunderstand-
ing: Because robots look human-like, people often assume
that they have human-like vision capabilities. However, while
humans have a horizontal field of view of more than 180◦,
a robot’s eyes or cameras typically have less than 60◦ on its
horizontal FoV (e.g., Pepper’s 54.4◦ [1], NAO’s 56.3◦ [2] and
Fetch’s 54◦ [3, 4]). Such a mismatch between human expecta-
tions and robot performance leads to inaccurate mental models
[5] of robot vision capabilities, likely causing inefficiencies in

collaborative tasks, e.g., multiple research has shown repeated
clarifications for objects during handovers [6, 7].

To address such misaligned expectations, we argue that
robots should proactively explain their vision limitations not
only through post-hoc verbal clarifications, but also via design-
driven communication. This should be done during interac-
tions or before interaction starts in order to gain trust, a
critical element for fluent human-robot collaboration [8, 9].
For example, studies show that people are more likely to
trust robots when they have a detailed understanding of robot
capabilities [10, 11].

Furthermore, using familiar interaction patterns from
human-human interactions encourages the alignment of men-
tal models between human and robot, leading to improved
acceptance and perceived trustworthiness [12]. Robots using
gestures, for example, have been found to be perceived as hav-
ing higher anthropomorphism than no gestures at all [13, 14].

Yet, trust not only depends on anthropomorphic traits, but
also on clear communication of robot capabilities. Communi-
cation strategies in HRI are classified as implicit (e.g., gestures
or movements) and explicit (e.g., verbal explanations) [15].
In practice, robots can provide verbal communication, like
explanations, or non-verbal ones, like physically scanning
their surroundings to accommodate limited vision. However,
these strategies often require back-and-forth clarifications with
human collaborators. Moreover, they fail to overcome the
wrong yet long-lasting first assumptions that users make based
on the robot’s appearance, e.g., wide FoV from a robot’s
human-like eyes.

Thus, we aim to address such misalignment through robot
design communication, activating familiar interaction patterns.
They may be particularly helpful for robot users who will
make the first impression on the robot or as a quick-start guide
after robot deployment, where the robot’s capabilities can
be communicated through familiar accessories, arm gestures,
or other objects. By aligning humans’ expectations with the
robot’s actual abilities, we hope these designs allow users to
provide informed requests and reduce the need for repeated
clarifications. We aim not only to correct mental model
misalignment but also to maintain positive perceptions of the
robot, such as its likability, competence, and trustworthiness.

Specifically, to communicate the robot’s FoV, we propose
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Fig. 1: The proposed designs to communicate the robot’s FoV with a baseline at the beginning, to be implemented to the real
robot and evaluated in a human-subjects study. Designs are detailed in Section III.

five designs (Figure 1, 4–8) and plan to compare them with
three baseline conditions in common modalities: No indicator,
image on a screen, and voice (Figure 1, 1–3). Our designs
draw inspiration from everyday experiences (e.g., wearing
glasses, stage spotlights) and relatable behaviors (e.g., human
gestures). We also present a human-subjects study design to
evaluate them in a collaborative kitting scenario, measuring
objective performance (e.g., error rates, reaction times) and
subjective perceptions (e.g., trust, likability) to determine
which designs best align user expectations with the robot’s
actual vision capabilities and the trade-offs that robot designers
may need to make.

II. RELATED WORK

A. Anthropomorphism and Familiar Experiences in HRI

Anthropomorphism is the human tendency to transfer
human-like characteristics to non-human entities [16, 17, 18].
Research shows that anthropomorphic design in embodied
robots can enhance subjective outcomes, such as likability,
familiarity, and perceived competence, thereby improving in-
teraction quality [19]. Physical embodiment, as opposed to
virtual agents, often produces stronger positive effects on
perception and performance during interactions [20, 21].

However, designing anthropomorphic robots requires care-
ful consideration to balance its benefits with potential draw-
backs. Many studies have explored the impact of anthropomor-
phic features through robot design. For instance, Fong et al.
[22] provided an extensive review of anthropomorphic robot
design, emphasizing that appropriate anthropomorphic cues
such as facial expressions, gestures, and human-like bodily
movements can improve user acceptance and engagement.
Ahmad et al. [23] compared a human-like (Pepper) and a
machine-like (Husky) robot in a game scenario, finding par-
ticipants interacting with the humanoid robot reported lower
cognitive load and higher trust. While anthropomorphism
can support users’ perception of predictable robot behavior,

excessive anthropomorphic features may result in discomfort
or reduced trust [24]. For example, Onnasch and Hildebrandt
[25] found anthropomorphic features like eyes and eyebrows
on robot’s display can capture attention, but also distract
people from relevant task, failed to reveal positive effects on
trust in industrial HRI.

With most of the prior work focus on enhancing subjective
outcomes, such as likability and engagement, few of them
address how to effectively communicate a robot’s capabilities
through anthropomorphic designs. Addressing this gap, our
approach leverages anthropomorphic elements and familiar
experience in designs, i.e., glasses (design 4) and spotlight
scene (design 8), to help people connect to everyday life,
making it easier to understand robot vision capabilities.

B. Body Language and Gestures

While anthropomorphism is more focused on appearance
[26], body language and human-like gestures are a communi-
cation style to design a robot’s behavior anthropomorphically
[22, 25]. Robots that use gestures have been found to appear
more anthropomorphic [13]. Specifically, gestures are a form
of nonverbal communication that includes visible movements
of the hands, arms, face, and other parts of the body to
express an idea or meaning. The most straightforward way for
robots to communicate effectively is to use similar nonverbal
cues as humans (e.g., arm gesture) [27], which helps reduce
cognitive effort and improve trust. For example, Riek et al.
[28] found that cooperative gestures aligned with human
expectations can reduce discomfort and enhance interaction
effectiveness. Similarly, Xu et al. [29] used body language to
express robot NAO’s mood in an imitation game. They found
people were able to differentiate between positive and negative
robot mood. Sauppé and Mutlu [30] showed that human-like
deictic gestures, such as pointing, touching, and presenting on
robots enable users to better understand references in complex
settings. Dragan et al. [31] found that motion designed to
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Fig. 2: Spectrum of indicator designs ranging from egocentric
(robot) to allocentric (task), and vice versa.

convey the robot’s intent clearly leads to more fluent col-
laborations and higher comfort compared to functional and
predictable motion. In addition, Block et al. [32] found that
intra-hug gestures, such as holding, rubbing, patting, and
squeezing, improved user experience by responding to user
actions and initiating gestures proactively. This mirroring of
human hugging dynamics made interactions more natural and
emotionally engaging. Besides, augmented reality and abstract
pointing behaviors have also been studied [21, 33].

These works highlight the importance of integrating human-
like behaviors in robot design to enhance user understanding
and trust. Building on these findings, our work explores both
static and dynamic gesture-based strategies (designs 5-7) to
communicate the robot’s narrower FoV, bridging the gap be-
tween its human-like appearance and actual vision capabilities.

III. TAXONOMY AND DESIGNS

To address how robots can convey their FoV to align with
people’s mental models, we first use a similar taxonomy
(Figure 2) in our prior work (under review) that classifies FoV
indicators along a spectrum from egocentric (robot-oriented)
to allocentric (task-oriented) in four connected areas: Eye,
head, transition, and task space. Egocentric designs focus
on the robot, which possesses the property of FoV, directly
influencing the robot’s ability to perceive its surroundings.
Expanding rightward, transition space designs extend from the
robot into its operating environment, and gradually transit to
the task space, bridging the gap between the robot and the
environment. Finally, in allocentric space, designs are task-
oriented. They are independent of the robot’s physical body
and are placed directly in the robot’s operational environment
to reflect the robot’s FoV. Below we describe three baseline
conditions and five designs grounded in this taxonomy.

Three baselines are (1) Baseline: Original robot with no
indicator; (2) Screen: Robot showing its camera feeds; (3)
Voice: Robot announces its FoV: “My field of view is 54.4◦.”

Five designs are (4) Glasses: A static visual cue focusing
on the robot’s eye space, which draws inspiration from people
wearing glasses in life. The glasses’ legs are widened to
block areas outside the robot’s FoV. (5) Near-Eye Hands:
A static gesture-based approach focusing on the robot’s head
space, the robot raises its hands to the sides of its eyes to
visually indicate the range of its FoV. (6) Motion: A dynamic
gesture focusing on bridging the gap between head space
and task space. Robot starts moving its hands from the near-
eye hands position, then extends its arms to the task space,
revealing the vision range. (7) Extended Arms: A static
gesture-based approach, the robot extends both arms forward
to visually define its operational workspace, linking the robot

with its direct task environment, revealing the vision range
the robot can see. (8) Spotlight Scene: A static task-space
design inspired by spotlights in life, projects lights direct
user attention to what lies within the robot’s vision range. A
projector will be mounted on the robot’s head to dynamically
project the spotlight effect onto the task space.

IV. HYPOTHESIS

To explain a robot’s vision capability, we seek to answer
a key research question: What design strategies can most
effectively help users understand a robot’s FoV while
maintaining trust and positive perceptions of the robot?
Particularly, we aim to test two groups of hypotheses.

1. Objective Outcomes: We believe designs closer to the
allocentric space will bring task-related objective benefits, as
they provide direct cues to reveal the FoV in the task space.
Specifically, we hypothesize that they will

H1 – Improved Effectiveness in Understanding: Improve
people’s understanding of the robot’s FoV, to be measured
by error rates and a 7-item Likert scale question on how
understandable the indicator is.

H2 – Increased Efficiency: Improve task efficiency, to be
measured by participants’ reaction times during task.

H3 – Reduced Effort: Lower participants’ cognitive effort,
to be measured by the NASA Task Load Index.

2. Trust and Perceptions: We believe our proposed designs
will achieve higher positive perceptions as they are more fa-
miliar designs and activate human-human interaction patterns.
We also believe egocentric designs will have higher positive
perceptions and trust than allocentric designs, as they leverage
human-like features to create relatable experiences.

H4 – Positive Perception: (a). Transition-space design will
receive the highest positive perception scores, as it dynami-
cally connect robot to its direct task environment, followed by
head-space and eye-space static designs, with the task-space
design ranked lowest. (b). The proposed designs will yield
higher positive perception scores than the baseline conditions.
Perceptions will be measured by anthropomorphism, likability,
and competence, as well as a preference question.

H5 – More Trust: Egocentric designs will foster greater
trust, measured by the Multi-Dimensional Measure of Trust.

V. METHOD

To test the hypotheses, we design and will conduct a 1×8
within-subject study and will control ordering effects using a
balanced Latin square design [34].

A. Apparatus

Robot Platform: We will use a Pepper robot [35], a 1.2m
(3.9ft) tall, two-armed humanoid robot developed by Alde-
baran. The robot has a common limited horizontal FoV of
54.4◦ [1], and its hands can grasp light objects.

Task Environment: We will use the FetchIt kitting task
environment [36], originally designed as a challenge task for
the FetchIt Mobile Manipulation competition at ICRA 2019. In
this scenario, a robot navigates to different stations to collect
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Fig. 3: Task environment adapted from the FetchIt competition
[36]: Robots place parts in caddies for human assembly.

gearbox parts, place them in a caddy, and deliver the caddy
to the assembly table for assembly workers to assemble a
gearbox. Replenishment workers will replenish parts.

B. Motivating Replenishment Scenario, Task, and Procedure

We investigate a scenario where a replenishment worker
restocks gearbox bottoms at the gearbox station while an
assembly worker assembles gearboxes at the caddy station
(Figure 3). In this scenario, the replenishment worker places
the first gearbox top out of the robot’s FoV. The assembly
worker sees the same part missing from the caddy–a common
failure scenario reported in the FetchIt task due to irregular
caddy with sections easily occluded [37, 38] and asks: “Hey
Pepper, can you pass me the gearbox top?” Pepper proactively
responds by explaining its incapability via assumption check-
ers [39, 40, 38]: “I do not perceive any gearbox top so I will
not able to grasp a gearbox top,” and attempts to recover from
its failure by scanning the station by moving its head. Upon
spotting the gearbox top, it says: “I perceive a gearbox top so
I will grasp the gearbox top.”

Upon detecting the replenishment worker’s confusion that
the robot could not see the gearbox bottom that the worker just
placed, Pepper explains: “Due to my limited vision capability,
I can only perceive objects within my field of view. However, I
can provide several ways to help you understand my horizontal
field of view. Before we proceed, please place all the other
objects you need to deliver on the table.”

In the experiment, participants will first read a consent
form. Upon agreement, they will complete a demographic
questionnaire. Then, participants will act as replenishment
workers, replenishing the parts at the gearbox station, and
the experimenter will act as the assembly worker. After
Pepper speaks, participants will place ten gearbox tops and ten
gearbox bottoms on the gearbox station. Then Pepper will try
to indicate its field of view through all of the eight conditions
in the assigned Latin square order in this within-subjects
experiment. Specifically, the robot’s base will rotate randomly
to prevent participants from using prior knowledge of the FoV
thus influencing their evaluation. After each condition, they
will guess which parts they believe Pepper can see as quickly
as possible and finish the questionnaires.

For implementation, we will 3D model glasses and the
mount of the projector in spotlight scene in SolidWorks and

then 3D print them. For gestures, we will make sure the arms
accurately reflects its FoV by checking Pepper’s camera feed.
We will program Pepper with Choregraphe [41], an application
in part to design robot behaviors and speech.

C. Data Collection and Measures
To measure the constructs in our hypotheses, we will use

two objective metrics and five subjective metrics.
For objective measures, error rate will be calculated by

wrong guesses/all guesses. There are two cases where par-
ticipants can make a wrong guess: (1) The part is within
the robot’s FoV but they guess it is outside; (2) The part is
outside the robot’s FoV but they guess it is within. Reaction
time will be calculated as the duration from when participants
start observing the design to when they start to fill out the
questionnaire with what parts they believe are within FoV.

For subjective measures , we will use the NASA Task Load
Index [42, 43] to measure cognitive effort, with both the load
survey and its weighting component to calculate a weighted
score. Anthropomorphism and likability will be measured
using the Godspeed Anthropomorphism and Likability scales
[44]. Competence will be measured using the ROSAS scale
[45]. Trust will be measured using the widely cited Multi-
Dimensional Measure of Trust (MDMT) [46, 47], which
captures both the performance and moral aspects of trust.

D. Data Analysis
We will use a Bayesian analysis framework [48] to measure

evidence for or against both the null (H0) and alternative
(H1) hypotheses. This method uses the Bayes Factor (BF) to
compare how likely the observed data are under H1 (presence
of an effect) versus H0 (absence of an effect). For instance,
BF10=8 indicates that the data are eight times more likely to
occur under H1 than H0, thereby supporting H1. We will also
use a credible interval (CI) instead of Frequentist’s confidence
interval. A credible interval directly states that there is a α%
probability that the parameter falls within the interval.

To interpret our Bayes Factor results, we will use the widely
adopted discrete classification scheme by Lee and Wagenmak-
ers [49]. For evidence favoring H1, BF10 is deemed anecdotal
(inconclusive) when BF10∈(1,3], moderate when BF10∈(3,10],
strong when BF10∈(10,30], very strong when BF10∈(30,100],
and extreme when BF10∈(100,∞). Anecdotal evidence is
considered inconclusive while others are conclusive.

VI. CONCLUSION

In this workshop paper, we aim to leverage familiar expe-
riences to bridge the gap between user mental models and a
robot’s vision capabilities while maintaining task performance
and subjective experience. We introduce five indicator designs
to be evaluated in a motivating replenishment scenario with
three baseline conditions. We will conduct a user study to eval-
uate task performance and participants’ subjective experiences.
With future results, we hope to provide insights for robot
designers to better design a robot through effective indicators
or gestural “open-box tutorials” that familiarize first-time users
with the robot’s vision capabilities.
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[30] A. Sauppé and B. Mutlu, “Robot deictics: How gesture and context shape
referential communication,” in Proceedings of the 2014 ACM/IEEE
international conference on Human-robot interaction, 2014, pp. 342–
349.

[31] A. D. Dragan, S. Bauman, J. Forlizzi, and S. S. Srinivasa, “Effects of
robot motion on human-robot collaboration,” in Proceedings of the tenth
annual ACM/IEEE international conference on human-robot interaction,
2015, pp. 51–58.

[32] A. E. Block, H. Seifi, O. Hilliges, R. Gassert, and K. J. Kuchenbecker,
“In the arms of a robot: Designing autonomous hugging robots with
intra-hug gestures,” ACM Transactions on Human-Robot Interaction,
vol. 12, no. 2, pp. 1–49, 2023.

[33] A. Huang, A. Ranucci, A. Stogsdill, G. Clark, K. Schott, M. Higger,
Z. Han, and T. Williams, “(gestures vaguely): The effects of robots’ use
of abstract pointing gestures in large-scale environments,” in Proceed-
ings of the 2024 ACM/IEEE International Conference on Human-Robot
Interaction, 2024, pp. 293–302.
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